
z/VM
Version 7 Release 2

Reusable Server Kernel
Programmer's Guide and Reference

IBM

SC24-6313-01

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
463.

This edition applies to Version 7.2 of IBM z/VM (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2020-09-07
© Copyright International Business Machines Corporation 1999, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xiii

Tables... xv

About This Document..xix
Intended Audience.. xix
Where to Find More Information...xix

How to Send Your Comments to IBM..xxi

Summary of Changes for z/VM Reusable Server Kernel Programmer's Guide and
Reference... xxiii
SC24-6313-01, z/VM 7.2 (September 2020)...xxiii
SC24-6313-00, z/VM 7.1 (September 2018)...xxiii
SC24-6220-02, z/VM 6.4 (November 2016).. xxiii

Chapter 1. Basic Concepts... 1
Motivation...1
Overall Server Organization... 4
Jobs of the Mainline... 5
More About Services.. 5
Anything Else?..7
Calling The Entry Points... 7

DMSGPI Macros..7
DMSRP Macros... 8

Building a Server Module... 9
Setup At A Glance.. 10
Other Considerations...10

Chapter 2. Connectivity and Line Drivers.. 11
The Service Instance's View..12

The Client Block, or C-Block.. 12
From Line Driver to Instance..15
From Instance to Line Driver..16

TCP/IP Considerations...16
UDP/IP Considerations.. 17
IUCV Considerations..18
APPC/VM Considerations.. 19
Spool Considerations...19
MSG/SMSG Considerations... 20
Virtual Console Considerations... 21
Subcom Considerations...21
Line Driver Commands...22
More Detail on Line Drivers..22

Line Drivers as Services..22
Self-Sourced Line Drivers...23
Writing Your Own Line Driver... 23

Authorization..24

 iii

Chapter 3. DASD Management... 25
DASD Subsystem Overview... 25
Limits..26
Modes of Operation... 27
Programming Interfaces..27
Administrator and Operator Considerations...27

Creating a Storage Group... 27
Changing the Minidisks in A Storage Group...28
Deleting A Storage Group...29

Chapter 4. File Caching.. 31
Managing the Set of Caches.. 31
File Operations...31
Transformations...32
Example..32
Stale Data...33
Cache Utilization.. 33
Constraints...33

Chapter 5. Authorization..35
Overview...35
Entry Points.. 35
Naming Conventions and Other Limits..36
Group Authorization Considerations... 36
Persistent Storage of Authorization Data..37

Using CMS Minidisks.. 38
Using the CMS Shared File System.. 38
Migrating Among Repositories...39

Parallelism... 40
Administrative Commands.. 40
Other Services' Use of Authorization...40

Overview... 40
Activation..41

Chapter 6. Enrollment..43
Programming Interfaces..44
Operator Commands... 44

Chapter 7. Indexing by Prefixes... 47
Overview...47
Example..47
Index Sharing...47
No Record Deletion?.. 48
Commands... 48

Chapter 8. Anchors.. 49

Chapter 9. Memory Management..51

Chapter 10. Worker Machines.. 53
Functional Overview.. 53
Server Configuration Considerations.. 54
Distributing Worker Machines... 54
API Details... 55
The Worker C-Block...56

iv

Operator Commands... 56
Writing a Worker Machine Program...57

Chapter 11. Run-Time Environment... 59

Chapter 12. Initialization and Profiles.. 63
Flow of Control...63
Execution Conditions within RSKMAIN... 65
PROFILE RSK... 65
Starting and Stopping.. 65
Configuration Parameters..65
Storage Group Definition File.. 69
User ID Mapping Facility..69

Chapter 13. Monitor Data... 71
Monitor Buffer Organization.. 71
Kernel Row...72
Service Row..72
Line Driver Row.. 72
Authorization Row..73
Storage Group Row..73
Memory Row.. 74
Enrollment Row... 74
Cache Row..75
Trie Row... 75
Worker Row..75

Chapter 14. Command Descriptions... 77
Syntax, Message, and Response Conventions..78
APPC LIST.. 81
APPC QUERY.. 83
APPC REPORT.. 84
APPC START...85
APPC STOP...87
AUTH CRECLASS..88
AUTH CREOBJECT... 89
AUTH DELCLASS.. 90
AUTH DELOBJECT..91
AUTH DELUSER..92
AUTH LISTCLASS... 93
AUTH LISTOBJECT.. 94
AUTH MODCLASS...95
AUTH PERMIT.. 96
AUTH QOBJECT... 97
AUTH RELOAD..98
BKWENRCP.. 99
CACHE CREATE..100
CACHE DELETE.. 101
CACHE LIST..102
CMS.. 103
CONFIG AUT_CACHE...104
CONFIG AUT_DATA_1...105
CONFIG AUT_DATA_2...106
CONFIG AUT_FREE... 107
CONFIG AUT_INDEX_1...108
CONFIG AUT_INDEX_2...109
CONFIG AUT_LOCATION.. 110

 v

CONFIG AUT_LOG... 111
CONFIG AUTHCHECK_AUTH.. 112
CONFIG AUTHCHECK_CACHE...113
CONFIG AUTHCHECK_CMS...114
CONFIG AUTHCHECK_CONFIG...115
CONFIG AUTHCHECK_CP..116
CONFIG AUTHCHECK_ENROLL...117
CONFIG AUTHCHECK_LD..118
CONFIG AUTHCHECK_MONITOR... 119
CONFIG AUTHCHECK_SERVER...120
CONFIG AUTHCHECK_SGP... 121
CONFIG AUTHCHECK_TRIE.. 122
CONFIG AUTHCHECK_USERID... 123
CONFIG AUTHCHECK_WORKER... 124
CONFIG MEM_MAXFREE...125
CONFIG MON_KERNEL_ROWS... 126
CONFIG MON_PRODUCT_ID.. 127
CONFIG MON_USER_SIZE.. 128
CONFIG MSG_NOHDR...129
CONFIG NOMAP_APPC..130
CONFIG NOMAP_IUCV.. 131
CONFIG NOMAP_MSG... 132
CONFIG NOMAP_SPOOL..133
CONFIG NOMAP_TCP...134
CONFIG NOMAP_UDP..135
CONFIG RSCS_USERID... 136
CONFIG SGP_FILE... 137
CONFIG SPL_CATCHER... 138
CONFIG SPL_INPUT_FT..139
CONFIG SPL_OUTPUT_FT... 140
CONFIG SRV_THREADS...141
CONFIG UMAP_FILE.. 142
CONFIG VM_CONSOLE.. 143
CONFIG VM_MSG.. 144
CONFIG VM_SPOOL...145
CONFIG VM_SUBCOM... 146
CONSOLE LIST... 147
CONSOLE QUERY...148
CONSOLE START..149
CONSOLE STOP... 150
CP... 151
ENROLL COMMIT... 152
ENROLL DROP..153
ENROLL GET...154
ENROLL INSERT...155
ENROLL LIST..156
ENROLL LOAD.. 157
ENROLL RECLIST... 158
ENROLL REMOVE...159
IUCV LIST...160
IUCV QUERY...161
IUCV REPORT.. 162
IUCV START... 163
IUCV STOP... 164
MONITOR DISPLAY... 165
MONITOR USER...166
MSG LIST..167
MSG QUERY... 168

vi

MSG START.. 169
MSG STOP.. 170
SERVER SERVICES.. 171
SERVER MONITOR...172
SERVER STOP.. 173
SGP CREATE.. 174
SGP DELETE... 175
SGP LIST.. 176
SGP MDLIST...178
SGP START...179
SGP STOP...180
SPOOL LIST..181
SPOOL QUERY..182
SPOOL START.. 183
SPOOL STOP.. 184
SUBCOM LIST.. 185
SUBCOM QUERY.. 186
SUBCOM START...187
SUBCOM STOP...188
TCP LIST...189
TCP QUERY.. 190
TCP REPORT.. 191
TCP START... 192
TCP STOP... 194
TRIE LIST... 195
UDP LIST.. 196
UDP QUERY..197
UDP REPORT..198
UDP START...199
UDP STOP...200
USERID MAP.. 201
USERID RELOAD.. 202
WORKER ADD.. 203
WORKER CLASSES...204
WORKER DELCLASS.. 205
WORKER DELETE...206
WORKER DISTRIBUTE...207
WORKER MACHINES... 208
WORKER RESET...210
WORKER STATUS.. 211

Chapter 15. Function Descriptions..213
ssAnchorGet — Get Anchor Value... 214
ssAnchorSet — Set Anchor Value.. 216
ssAuthCreateClass — Create an Object Class...217
ssAuthCreateObject — Create an Object.. 219
ssAuthDeleteClass — Delete a Class...221
ssAuthDeleteObject — Delete an Object...223
ssAuthDeleteUser — Delete a User... 225
ssAuthListClasses — List Classes..227
ssAuthListObjects — List Objects in Class.. 229
ssAuthModifyClass — Modify an Object Class.. 231
ssAuthPermitUser — Permit a User...233
ssAuthQueryObject — Query an Object.. 236
ssAuthQueryRule — Query a Rule... 238
ssAuthReload — Reload Authorization Data... 240
ssAuthTestOperations — Test Operations..242

 vii

ssCacheCreate — Create Cache.. 244
ssCacheDelete — Delete Cache...246
ssCacheFileClose — Close Cached File...247
ssCacheFileOpen — Open Cached File..248
ssCacheFileRead — Read Cached File.. 252
ssCacheQuery — Query Cache.. 254
ssCacheXlTabSet — Set Translation Table... 256
ssClientDataGet — Get Client Data... 258
ssClientDataInit — Initialize Client Data Buffers.. 260
ssClientDataPut — Put Client Data..261
ssClientDataTerm — Terminate Client Data Buffers...263
ssEnrollCommit — Commit Enrollment Set.. 264
ssEnrollDrop — Drop Enrollment Set.. 266
ssEnrollList — List Enrollment Sets...268
ssEnrollLoad — Load Enrollment Set.. 270
ssEnrollRecordGet — Get Enrollment Record...272
ssEnrollRecordInsert — Insert Enrollment Record.. 274
ssEnrollRecordList — List Records In Enrollment Set.. 276
ssEnrollRecordRemove — Remove Enrollment Record... 278
ssMemoryAllocate — Allocate Memory...280
ssMemoryCreateDS — Create Data Space.. 282
ssMemoryDelete — Delete Subpool..284
ssMemoryRelease — Release Memory... 285
ssServerRun — Run the Server.. 287
ssServerStop — Stop the Server..288
ssServiceBind — Bind A Service.. 289
ssServiceFind — Find A Service...291
ssSgpCreate — Create a Storage Group..293
ssSgpDelete — Delete a Storage Group.. 295
ssSgpFind — Find a Storage Group... 297
ssSgpList — List Storage Groups... 299
ssSgpQuery — Query a Storage Group.. 301
ssSgpRead — Read a Storage Group...304
ssSgpStart — Start a Storage Group..306
ssSgpStop — Stop a Storage Group.. 309
ssSgpWrite — Write a Storage Group.. 311
ssTrieCreate — Create a Trie... 313
ssTrieDelete — Delete a Trie... 315
ssTrieRecordInsert — Insert Record Into Trie..316
ssTrieRecordList — List Matching Records... 318
ssUseridMap — Produce Mapped User ID.. 320
ssWorkerAllocate — Allocate Connection to Worker Machine...322

Chapter 16. RSK Sockets... 327
Prerequisite Knowledge.. 327
Available Functions... 327
Programming with RSK Sockets..329
Restrictions and Limitations..329
Data Structures..330

Address Structure.. 330
Timeout Structure.. 330

Notes on PLXSOCK COPY.. 330
Constants... 330
Structures...330
Function Prototypes...330

Return Codes and ERRNO Values... 331
RSK Socket Calls..331

viii

PS_accept...331
PS_applinit... 332
PS_applterm...334
PS_async_read...334
PS_async_recv... 336
PS_async_sendto... 337
PS_async_write..339
PS_bind.. 340
PS_cancel... 341
PS_close... 342
PS_connect...343
PS_gethostid.. 344
PS_getpeername..344
PS_getsockname... 345
PS_getsockopt... 346
PS_ioctl...347
PS_libinit.. 348
PS_libterm..349
PS_listen...350
PS_read.. 351
PS_recvfrom...352
PS_select..353
PS_sendto.. 354
PS_setsockopt..356
PS_shutdown... 357
PS_socket...357
PS_write... 358

Appendix A. Sample PROFILE RSK...361

Appendix B. Sample User ID Mapping File.. 365

Appendix C. Authorization Data File Formats..367
Overview.. 367
The Data File.. 367
The Index File.. 369
The Log File..370

Appendix D. Enrollment Data File Format... 371

Appendix E. Storage Group File..373

Appendix F. Reserved Names... 375
Service Names... 375
Data Spaces... 376
TCP/IP Subtask Names... 376
UDP/IP Subtask Names...376

Appendix G. More Detail On Reason Codes... 377

Appendix H. Messages... 393
Generally Applicable Messages.. 393
CONFIG Service Messages.. 394
Line Driver Messages...394
SERVER Service Messages.. 396
USERID Service Messages.. 396

 ix

TCP and UDP Line Driver Messages.. 397
SGP Service Messages...402
RSK SUBCOM Messages..402
AUTH Service Messages.. 403
CP Service Messages... 405
CMS Service Messages.. 406
MSG Line Driver Messages.. 406
SPOOL Line Driver Messages...406
Enrollment API Messages... 408
MONITOR Service Messages...408
CACHE Service Messages..409
IUCV Line Driver Messages... 409
APPC Line Driver Messages...411
Worker API Messages..412
Trie Messages.. 414

Appendix I. Language Bindings.. 415
Assembler Language Bindings.. 415

Anchor Bindings (SSASMANC MACRO)... 415
Authorization Bindings (SSASMAUT MACRO)... 416
Cache Bindings (SSASMCAC MACRO)... 421
Client Bindings (SSASMCLI MACRO)... 423
Enrollment Bindings (SSASMENR MACRO)... 425
Memory Bindings (SSASMMEM MACRO)...428
Storage Group Bindings (SSASMSGP MACRO)..430
Services Bindings (SSASMSRV MACRO)..433
Trie Bindings (SSASMTRI MACRO).. 436
User ID Bindings (SSASMUID MACRO)..438
Worker Bindings (SSASMWRK MACRO).. 439

PL/X Language Bindings.. 440
Anchor Bindings (SSPLXANC COPY)..440
Authorization Bindings (SSPLXAUT COPY)..441
Cache Bindings (SSPLXCAC COPY)..444
Client Bindings (SSPLXCLI COPY)..447
Enrollment Bindings (SSPLXENR COPY)..448
Memory Bindings (SSPLXMEM COPY)... 450
Storage Group Bindings (SSPLXSGP COPY).. 451
Services Bindings (SSPLXSRV COPY).. 454
Trie Bindings (SSPLXTRI COPY)...456
User ID Bindings (SSPLXUID COPY).. 457
Worker Bindings (SSPLXWRK COPY)...458

Appendix J. What's Changed Since the Beta...461

Notices..463
Programming Interface Information...464
Trademarks..464
Terms and Conditions for Product Documentation.. 465
IBM Online Privacy Statement.. 465

Bibliography..467
Where to Get z/VM Information.. 467
z/VM Base Library..467
z/VM Facilities and Features... 469
Prerequisite Products..470

x

Index.. 471

 xi

xii

Figures

1. Reusable Server Kernel Overview...5

2. Line Driver Organization..12

3. Reusable Server Kernel DASD.. 26

4. Run-Time Environment Control Blocks.. 60

5. PL/X Linkage.. 61

6. Assembler Linkage.. 62

7. Flow of Control.. 64

 xiii

xiv

Tables

1. Additional Help Areas..2

2. Service Block, or S-Block.. 6

3. Initialization Entry Point Parameter List... 6

4. Service Entry Point Parameter List..7

5. Termination Entry Point Parameter List..7

6. Files Needed to Run Your Server.. 10

7. Additional Setup Tasks... 10

8. Client Block, or C-Block.. 12

9. Line Driver Names... 13

10. User ID Mapping Schemes..14

11. Line-Driver-Specific Portion of C-Block..14

12. Message from Line Driver to Instance..15

13. Message from Instance to Line Driver..16

14. Building a Storage Group Step..28

15. Changing the Minidisk Configuration..28

16. Deleting a Storage Group..29

17. Programming Interfaces... 35

18. Authorization API Naming Conventions... 36

19. Authorization Data File Format...37

20. Migrating Authorization Data from Minidisks to SFS..39

21. Migrating Authorization Data from SFS to Minidisks..39

22. Line Driver and Service Calls to ssAuthTestOperations...40

23. Activating Authorization Checking for Services and Line Drivers.. 41

 xv

24. Authorization Configuration Parameters..42

25. Enrollment APIs.. 44

26. Enrollment Commands... 45

27. WORKER Commands.. 56

28. Register Contents at Procedure Entry.. 60

29. Parameter List Array for RSKMAIN...62

30. RUNSERV and WAITSERV Commands... 65

31. Configuration Variables...66

32. Monitor Data Rows..71

33. KERNEL Monitor Row.. 72

34. SERVICE Monitor Row...72

35. LINEDRV Monitor Row.. 73

36. AUTH Monitor Row..73

37. SGP Monitor Row.. 73

38. MEM Monitor Row... 74

39. ENROLL Monitor Row.. 74

40. CACHE Monitor Row..75

41. TRIE Monitor Row... 75

42. WORKER Monitor Row.. 76

43. Command Subsets.. 77

44. Examples of Syntax Diagram Conventions...78

45. Programming Interfaces...213

46. Flags for ssCacheFileOpen... 249

47. Socket Functions Available in RSK Library...327

48. Additional RSK-Specific Functions in Library...328

xvi

49. Free Row... 367

50. Class Row.. 368

51. Object Row.. 368

52. User Row... 368

53. Rule Row... 369

54. Anchor Row... 369

55. Log Stamp Row... 370

56. Log Update Row.. 370

57. Reason Codes and Recommended Actions... 377

58. Differences Between Beta and GA Levels..461

 xvii

xviii

About This Document

This document describes how you can use the IBM® z/VM® reusable server kernel to develop and execute
server programs on the z/VM Conversational Monitor System (CMS).

Intended Audience
This document is for programmers who want to develop server programs and run them in the CMS
environment.

This document covers advanced material in server construction and is not for beginning programmers. To
use the material in this document, readers should:

• Know one of the supported programming languages, and
• Understand concurrent programming concepts, including both general techniques and specific

concepts relevant to CMS Application Multitasking, and
• Have experience with CMS application development and the tools and facilities used by CMS application

developers (for example, the GENMOD command and the Callable Services Library), and
• Have a working knowledge of CMS and z/VM as they appear to the CMS application developer, and
• Have application development experience with at least one z/VM connectivity technology, such as

TCP/IP.

Where to Find More Information
For more information, see “Bibliography” on page 467 at the back of this document.

© Copyright IBM Corp. 1999, 2020 xix

xx z/VM: Reusable Server Kernel Prog. Guide & Ref.

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem

Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (www.ibm.com/vm/service).
• Go to IBM Support Portal (www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1999, 2020 xxi

http://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
http://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
http://www.ibm.com/vm/service/
http://www.ibm.com/support/entry/portal/Overview/

xxii z/VM: Reusable Server Kernel Prog. Guide & Ref.

Summary of Changes for z/VM Reusable Server Kernel
Programmer's Guide and Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

SC24-6313-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6313-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

SC24-6220-02, z/VM 6.4 (November 2016)
This edition includes changes to support the general availability of z/VM 6.4.

© Copyright IBM Corp. 1999, 2020 xxiii

xxiv z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 1. Basic Concepts

Motivation
Most operating systems suitable as server platforms offer a variety of technologies to the server author.
For example, such operating systems might offer one or more sets of communication interfaces, a
threading interface, a file system interface, an enrollment and authorization interface, storage
management primitives, and so on. In some cases, the technologies offered the server author are
complex, advanced technologies for which the deployment strategies, programming interfaces, and even
the problems solved are apparent only after much study.

The problem created by such systems is that they foist the technology assimilation, assessment,
deployment, and integration responsibilities onto the server author. To use the system's technologies in a
smart way, the server developer must learn all the system's technology elements, understand their APIs,
understand the problems each element is designed to solve, and understand how these apparently-
discrete technology elements relate to one another. This creates a large burden for the server developer,
and it creates a situation in which each server author (at different companies, for example) must endure
the same learning curve in order to construct a server that exploits the technology of the operating
system underneath it. Alternatively, such systems create the problem that server authors do not exploit
the systems' technologies because they do not understand the technologies or how to apply them; this
creates a problem for the server applications being developed -- they do not use the system optimally.

To overcome these problems on z/VM, IBM studied the problem of z/VM server construction and
identified problems common to many servers. Further, it identified the technologies relevant to solving
those problems in an optimal way and is delivering server enablers employing these technologies. IBM's
first efforts in this area produced Server Tasking Environment/VM and its follow-on, CMS Application
Multitasking; these very significant CMS enhancements moved CMS from a single-processor, single-
threaded programming environment to a parallel, multithreaded system. Continued work in this area has
produced not more operating system code but rather has produced an "empty" server program that
server writers can use as a starting point for server construction. This "empty" server, called the reusable
server kernel, consists of a text library of routines and a macro library of function prototypes and constant
definitions. To construct an actual server program, the server author attaches application-specific code to
a set of interfaces in the reusable server kernel. The result of such attachment is a server program heavily
exploitive of the z/VM system's best technologies.

A specific example of the reusable server kernel's ability to relieve the server author of technology
exploitation will be helpful. It is well known that building a z/VM server in a multithreaded fashion helps
boost the server's performance and makes the server easier to design and understand. A server author
desiring to write such a program on his own would need to understand how to use CMS Application
Multitasking to construct a multithreaded program, and he would also need to decide upon a strategy for
dividing the server into multiple threads of execution. The reusable server kernel, though, lets the server
author ignore how to use CMS's tasking primitives to implement such a structure; instead, the reusable
server kernel itself organizes the server into this form, maintaining its own structures and strategies for
doing so. The only work left for the server author is to identify (through a server kernel-provided
programming interface) one or more "get request, do request, answer client" loops, or "services". The
server kernel replicates these services on multiple threads, doing so in response to the workload moving
through the server. In other words, it is the server kernel that makes the author's code multithreaded, not
the author.

The reusable server kernel provides help in more than just multithreading. Additional help is provided in
these areas:

© Copyright IBM Corp. 1999, 2020 1

Table 1. Additional Help Areas

Topic Description Page

Connectivity A big part of server design and development is the
selection and deployment of connectivity strategies
for the server program. The reusable server kernel
includes line drivers for both bulk-data and operator-
oriented protocols and unifies all of these line drivers
under a single interface. The server writer develops no
communication code when he uses the reusable
server kernel.

Chapter 2,
“Connectivity and
Line Drivers,” on
page 11

DASD I/O The reusable server kernel organizes the server's
DASD volumes into one or more storage groups. This
set of storage groups can be brought online, brought
offline, changed in size, and so on through a set of
APIs or a set of commands. I/O to these storage
groups is thread-synchronous, thread-blocking, and
does not serialize on the base virtual processor.

When the server runs in an XC-mode virtual machine,
the reusable server kernel can be configured to use
CP's MAPMDISK facility to perform I/O to its storage
groups. Using MAPMDISK lets the server program feel
the benefits of caching and the I/O efficiencies of the
paging subsystem. In other virtual machine types, or if
using MAPMDISK is inappropriate for some other
reason, the reusable server kernel can use DIAGNOSE
X'0250' or DIAGNOSE X'00A4' for storage group I/O.

Chapter 3, “DASD
Management,” on
page 25

File Caching Many servers, such as HTTP daemons, are read-
intensive with respect to CMS's file systems (minidisk,
Shared File System, and Byte File System). The
reusable server kernel offers a file caching API that
lets the server cache such files in a VM Data Space.
The caching support offers an open-read-close model
for file reading; when the server opens a file through
this API, the reusable server kernel loads the file into a
VM Data Space and keeps it there for reuse until it
becomes stale or is forced out because of storage
contention. The server can instruct the server kernel to
perform code page translation or record delineation
scheme transformations on the file as part of loading it
into the cache. This lets the cached file be kept in the
data space in the form most useful to clients.

Chapter 4, “File
Caching,” on page
31

Authorization The reusable server kernel provides callable entry
points for managing the authorization of users to
objects. These entry points implement a class-
oriented paradigm wherein the objects, classes, and
access types for each class are completely defined by
the server writer. The authorization data can reside on
CMS minidisks or in either accessed or unaccessed
Shared File System directories.

Chapter 5,
“Authorization,” on
page 35

2 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 1. Additional Help Areas (continued)

Topic Description Page

Enrollment Most servers maintain some kind of user database. In
the abstract, these databases are usually nothing
more than indexed access methods. The reusable
server kernel offers an API containing insert, delete,
and lookup operations for records having fixed-length,
64-byte keys and up to 65,450 bytes of data. The
reusable server kernel holds the records in a VM Data
Space, hashing them for quick lookup, and backs the
VM Data Space with a file in the Shared File System.
The hashing scheme makes it possible to hold many
hundreds of thousands of records with very good
performance.

Chapter 6,
“Enrollment,” on
page 43

Indexing by Prefixes The reusable server kernel provides APIs that allow
the server application to build and interrogate indices
by prefix. The reusable server kernel keeps each index
in its own VM Data Space while allowing multiple RSK-
based service machines concurrent access.

Chapter 7,
“Indexing by
Prefixes,” on page
47

Anchors Callable entry points let the server program set and
query the value of a server-wide anchor word.

Chapter 8,
“Anchors,” on page
49

Memory Management The reusable server kernel provides callable storage
allocation and release primitives designed for
multithreaded servers and suitable for most
situations. In addition, these APIs can allocate and
release storage in a VM Data Space.

Chapter 9,
“Memory
Management,” on
page 51

Run-time Environment The reusable server kernel provides an automatic
storage management convention that improves the
performance of the server by minimizing the number
of storage management calls needed to manage
automatic storage (that is, execution stack storage).
This convention prevents storage management calls in
most cases.

Chapter 11, “Run-
Time Environment,”
on page 59

Worker Machines The reusable server kernel provides a facility that lets
the server author run server work in a pool of virtual
machines, instead of all in a single machine. The
server kernel takes care of autologging these worker
machines and moving data between the central server
and the workers. This is useful for offloading complex
functions or for isolating risky or time-consuming
operations.

Chapter 10,
“Worker Machines,”
on page 53

Configuration and
Operation

The reusable server kernel's operation is configurable
and controllable through a set of commands. These
commands let the operator start and stop services,
manipulate storage groups, and perform other tasks
related to server management. This set of commands
can be used by an exec through ADDRESS RSK as part
of an initialization strategy or can be submitted
through several of the reusable server kernel's line
drivers.

Chapter 12,
“Initialization and
Profiles,” on page
63

Chapter 1. Basic Concepts 3

Table 1. Additional Help Areas (continued)

Topic Description Page

Socket Library The RSK socket library is a PL/X application
programming interface for socket programming.
Although the library does not provide a one-for-one
correspondent for every IUCV socket function, it does
provide many of the basic operations needed to
communicate with other socket programs.

Chapter 16, “RSK
Sockets,” on page
327

Overall Server Organization
Fundamentally, a server program is a program that accepts requests from clients and generates
responses for those clients. Some servers are very transaction-oriented; they accept a single, entire
request from a client, produce an entire response for the client, and then wait for another request from
the client. Other servers are much more stream-oriented; in these situations, the server and client carry
on a running dialogue over which they exchange information freely with one another, perhaps not
according to any strict request/response paradigm. The server author's choice of interaction paradigm is
based usually on the kind of work being performed and the kind of communication technology being used.
Personal preference no doubt also plays a role in this choice.

Whether the relationship is transaction-oriented or stream-oriented, the primary job of the server is to
handle requests from clients. Though handling of such system facilities as communications, virtual
storage, disk, and I/O devices is part of the overall picture in the server, the essential job of the server is
to interact with the client. All of the logic in the server supports this fundamental operation. Even
interaction with the server operator is a form of interacting with a client, though at first glance it might
seem that interacting with the operator is fundamentally different from interacting with "regular" clients.

The reusable server kernel strongly emphasizes this fundamental property by organizing the server
writer's work precisely along these lines. The server writer's primary responsibility is to provide one or
more routines, called services, whose job is to interact with a client over an abstract channel. The server
writer also provides a server mainline, the responsibility of which is to bring up the server, wait for it to
finish, and then take it down. Figure 1 on page 5 illustrates this organization.

4 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Figure 1. Reusable Server Kernel Overview

Jobs of the Mainline
The server mainline gets control shortly after the server module is invoked. It has a few essential
responsibilities:

1. It may perform server-wide initialization, such as reading and processing a configuration file, checking
and adjusting the virtual machine configuration, or starting a console log.

2. It must identify, or bind, one or more services. Binding a service makes it known to the reusable server
kernel and thereby makes it eligible to be "started" through operator command.

3. It must call entry point ssServerRun to run the server program. Control returns to the mainline when
the server has ended.

4. It may perform server-wide termination processing, such as closing a console log.
5. It must return to its caller.

More About Services
Service identification takes place during server initialization, in the mainline provided by the server
author. The reusable server kernel provides a callable interface, ssServiceBind, which lets the server
writer identify the set of services available. The server writer should arrange the mainline so that it calls
ssServiceBind once for each service being offered. Once a service is bound, it is available for use for
the life of the server.

ssServiceBind accepts as parameters a case-insensitive, eight-byte name for the service and certain
descriptive information about the service. In response to the call, it builds a data structure called the
service block or S-block, which is illustrated in Table 2 on page 6.

Chapter 1. Basic Concepts 5

Table 2. Service Block, or S-Block

Offset Length Usage

0 8 Used by IBM

8 8 Service name

16 4 Service name length

20 4 Address of initialization routine

24 4 Address of service routine

28 4 Address of termination routine

32 4 Service type

36 4 Service lockword

40 4 Current start count

44 4 Monitor data row pointer

Perhaps the most important parameters to ssServiceBind are the addresses of these key entry points:

• Initialization entry point: a reusable server kernel line driver calls a service's initialization entry point
when it starts the service but before it lets the service do any work for clients, but only if the service is
completely idle -- that is, only if the service is not currently handling clients through any other line
driver.

The initialization entry point should be prepared to accept a parameter list organized according to Table
3 on page 6. The return code and reason code in this parameter list are output parameters to be filled
in by the initialization entry point. If the initialization entry point produces a nonzero return code, the
start attempt will fail.

Table 3. Initialization Entry Point Parameter List. R1 points to this data structure on entry.

Offset Length Usage

0 4 A(return code)

4 4 A(reason code)

8 4 A(S-block)

• Service entry point: a reusable server kernel line driver activates a service's service entry point in
response to work accruing from clients. When a new client arrives, the line driver dedicates a thread --
an instance of the service -- to the new client and causes that thread to call the service entry point. 1 A
given client is always served by the same instance, and a given instance serves exactly one client.

The line drivers provided by the reusable server kernel are parallelizing, that is, they attempt to run a
service's service entry point on more than one thread concurrently if necessary. Configuration
parameter SRV_THREADS controls the maximum number of threads on which a given line driver will
attempt to run a given service's service entry point. For more information, see Table 31 on page 66.

The service entry point should be prepared to accept a parameter list organized according to Table 4 on
page 7. By way of this parameter list, the reusable server kernel passes the service entry point the
address of a crucial data structure called the client block or C-block. The C-block, which represents the
partnership among the client, the line driver, and the instance, contains information the instance uses

1 Do not confuse starting an instance with a call to CMS's ThreadCreate function. The reusable server
kernel keeps a pool of threads on which it runs service instances. Each such thread resides in its own
dispatch class. Depending upon workload, there may be more than once instance of a given service
executing at any given moment. In other words, the reusable server kernel parallelizes the server according
to the workload moving through the server.

6 z/VM: Reusable Server Kernel Prog. Guide & Ref.

to interact with the reusable server kernel and also contains fields identifying and characterizing the
client. For more information on the C-block, see “From Line Driver to Instance” on page 15.

Table 4. Service Entry Point Parameter List. R1 points to this data structure on entry.

Offset Length Usage

0 4 A(S-block)

4 4 A(C-block)

The relationship between the line driver and the instance is carried out through the CSL's queuing
primitives, using a queue owned by the line driver, called the line driver queue. Information necessary to
use this queue is contained in the C-block. To send messages to one another, the line driver and the
instance use QueueSend to place messages on the queue. To receive messages from each other, the
line driver and the instance use one of the "receive" primitives, such as QueueReceiveBlock, once
again operating on the line driver queue. The selective-receipt facility of the CSL's queue routines is
used so that the line driver and the set of instances using the line driver queue can all use the queue
without interfering with one another. 2 Specific information about the exchange of messages between
line drivers and services is available in Chapter 2, “Connectivity and Line Drivers,” on page 11.

When handling of the client is complete, the service entry point should return to its caller.
• Termination entry point: a line driver drives a service's termination entry point as part of "stop"

processing, if the service is not currently started through any other line drivers.

The parameter list for the termination entry point is described in Table 5 on page 7.

Table 5. Termination Entry Point Parameter List. R1 points to this data structure on entry.

Offset Length Usage

0 4 A(S-block)

Note: For information on the rest of the S-block fields, see “Writing Your Own Line Driver” on page 23.

Anything Else?
Beyond this, the organization of the server program is up to the server author. The usual approach will be
to implement a mainline and one or more services, along perhaps with some service threads that perform
encapsulated operations on shared data or some other repetitive work. The server author is strongly
encouraged to use CMS Application Multitasking functions for communication among threads,
implementation of critical sections, and performing other server-related operations.

Calling The Entry Points
Calls to the reusable server kernel's entry points are coded as ordinary assembler or PL/X function calls.
Language bindings for each of these languages are provided in macro libraries — DMSGPI for assembler
and DMSRP for PL/X.

DMSGPI Macros
The names of the macros are:

2 Each IPC key generated by the reusable server kernel, whether for external or internal use, has BKW
(X'C2D2E6') as its first three characters. This permits author-supplied code to exploit line driver queues for
other purposes when it seems helpful.

Chapter 1. Basic Concepts 7

Macro Description Page

SSASMANC Anchor bindings “Anchor Bindings (SSASMANC
MACRO)” on page 415

SSASMAUT Authorization bindings “Authorization Bindings
(SSASMAUT MACRO)” on page
416

SSASMCAC File cache bindings “Cache Bindings (SSASMCAC
MACRO)” on page 421

SSASMCLI Client bindings “Client Bindings (SSASMCLI
MACRO)” on page 423

SSASMENR Enrollment bindings “Enrollment Bindings
(SSASMENR MACRO)” on page
425

SSASMMEM Memory bindings “Memory Bindings (SSASMMEM
MACRO)” on page 428

SSASMSGP Storage group bindings “Storage Group Bindings
(SSASMSGP MACRO)” on page
430

SSASMSRV Service and server bindings “Services Bindings (SSASMSRV
MACRO)” on page 433

SSASMTRI Trie API bindings “Trie Bindings (SSASMTRI
MACRO)” on page 436

SSASMUID User ID bindings “User ID Bindings (SSASMUID
MACRO)” on page 438

SSASMWRK Worker machine bindings “Worker Bindings (SSASMWRK
MACRO)” on page 439

DMSRP Macros
The names of the macros are:

Macro Description Page

SSPLXANC Anchor bindings “Anchor Bindings (SSPLXANC
COPY)” on page 440

SSPLXAUT Authorization bindings “Authorization Bindings
(SSPLXAUT COPY)” on page 441

SSPLXCAC File cache bindings “Cache Bindings (SSPLXCAC
COPY)” on page 444

SSPLXCLI Client bindings “Client Bindings (SSPLXCLI
COPY)” on page 447

SSPLXENR Enrollment bindings “Enrollment Bindings (SSPLXENR
COPY)” on page 448

SSPLXMEM Memory bindings “Memory Bindings (SSPLXMEM
COPY)” on page 450

SSPLXSGP Storage group bindings “Storage Group Bindings
(SSPLXSGP COPY)” on page 451

8 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Macro Description Page

SSPLXSRV Service and server bindings “Services Bindings (SSPLXSRV
COPY)” on page 454

SSPLXTRI Trie API bindings “Trie Bindings (SSPLXTRI COPY)”
on page 456

SSPLXUID User ID bindings “User ID Bindings (SSPLXUID
COPY)” on page 457

SSPLXWRK Worker machine bindings “Worker Bindings (SSPLXWRK
COPY)” on page 458

These macros are invoked with the same conventions as the CMS Application Multitasking macros,
namely:

• for Assembler, just invoke the macro through its name.
• for PL/X, use %include syslib(macro);.

Of course, you must make these macro libraries available to your compiler or assembler by using the
GLOBAL MACLIB command.

A single standard for procedure linkage is used throughout the server. This standard affords each
procedure, whether customer-written or IBM-supplied, an extremely fast method for obtaining and
releasing automatic storage (that is, storage for local variables and save areas). All of the reusable server
kernel entry points expect the server author to use this linkage to call them, and the reusable server
kernel drives all customer-written routines (thread entry points, server entry point, and so on) using this
linkage. Macros are provided to implement the procedure linkage. For more information, see Chapter 11,
“Run-Time Environment,” on page 59.

Building a Server Module
To create a server using the reusable server kernel, the server author writes a set of application-specific
code, calling the reusable server kernel entry points as desired. Using an appropriate language processor,
the server author prepares one or more object modules (files of file type TEXT) containing his application.
Exactly one of these object modules defines entry point RSKMAIN, which is the server's entry point. 3

To build his module, the server writer link-edits his object code with the reusable server kernel object
library and any other object libraries needed. The result of the link-edit is a module containing both the
author's application and the appropriate reusable server kernel code. For example, if the server were
implemented in a single object deck called SAMPLE, this sequence of CMS commands would accomplish
the link-edit:

GLOBAL TXTLIB BKWLIB DMSPSLK DMSAMT VMMTLIB VMLIB CMSSAA
LOAD SAMPLE (CLEAR DUP AUTO LIBE NOINV FULLMAP RLDSAVE
INCLUDE VMSTART (NOCLEAR DUP AUTO LIBE NOINV FULLMAP RLDSAVE RESET VMSTART
GENMOD SAMPLE (MAP STR

The effect of these commands is to produce SAMPLE MODULE, the resultant server, and SAMPLE
LOADMAP, the load map associated with the module.

Note:

1. If there were multiple customer-supplied object modules, they would be accounted for in this
procedure by inserting the appropriate INCLUDE commands after the LOAD of the server mainline.

3 This is very much like the APPLMAIN required by a CMS Application Multitasking program. In fact, the
reusable server kernel is a CMS Application Multitasking program and provides its own APPLMAIN.
RSKMAIN is the label of the first instruction of the actual server code written by the server author.

Chapter 1. Basic Concepts 9

2. It is important to note that BKWLIB appears ahead of DMSAMT in the text library search order. BKWLIB
contains a DMSLESB (language environment selector text deck) that overrides the one found in
DMSAMT.

Setup At A Glance
In addition to the module you build, you will need these additional files to run your server:

Table 6. Files Needed to Run Your Server

File Description

BKWRTE MODULE This is the run-time environment manager program for the server. Place this
file somewhere in the server's file mode search order.

BKWUME TEXT This is the reusable server kernel's message repository. Make sure your
server's virtual machine issues SET LANGUAGE (ADD BKW USER as part of
its PROFILE EXEC.

PROFILE RSK The reusable server kernel runs this exec just after your server module begins
execution; the PROFILE RSK you write contains the configuration and
startup commands you need for your specific environment.

User ID Mapping File Controls the reusable server kernel's translation from connectivity-specific
client identifiers to a normalized, flat client name space.

If you plan to use certain other features of the reusable server kernel, you will need to perform additional
setup operations, according to:

Table 7. Additional Setup Tasks

Feature Task Page

Storage groups You will need to provide a storage group
configuration file.

Chapter 3, “DASD
Management,” on page 25

Authorization API You will need to set up authorization
data.

Chapter 5, “Authorization,” on
page 35

Enrollment API You will need to set up enrollment files. Chapter 6, “Enrollment,” on
page 43

Worker API You will need to set up worker
machines.

Chapter 10, “Worker
Machines,” on page 53

Other Considerations
The reusable server kernel manages the server as a CMS Application Multitasking program. All the
information contained in the publication z/VM: CMS Application Multitasking applies to programs written
using the reusable server kernel. For more information, see z/VM: CMS Application Multitasking.

10 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 2. Connectivity and Line Drivers

Server authors usually desire that their servers support many connectivity methods, for this increases the
variety and number of clients that can be served. For example, a database server might desire to use
TCP/IP and spool files as connectivity methods for clients; this would let clients reside on a variety of
networks and platforms. Similarly, a server author might desire that the server program accept operator
commands and deliver operator responses over a number of channels (CP MSG, CP SMSG, virtual console
I/O); this would let the server program be operable remotely or locally, with no extra work being done by
the server author.

A major problem in supporting heterogeneous connectivity is that the server author must learn a set of
communication interfaces for each connectivity technology to be supported, and he must write exploiting
code for each connectivity API. Further, the higher levels of such exploiting code are usually similar,
regardless of the transport technology being exploited; for example, most connection-oriented transports
support initialize, send, receive, and terminate primitives, and the server's treatment of those primitives is
remarkably similar from one transport to the next. Thus an additional problem, duplication of effort, is
also apparent.

The reusable server kernel relieves the server author of the burden of supporting multiple connectivity
technologies. It furnishes the server writer with a set of line drivers and does so in a way that hides most
communication differences from the server writer. Each line driver performs these basic functions for the
server core:

• It creates and deletes service instances in response to the arrival and departure of clients.
• It collects bytes from clients and delivers them to service instances according to the mapping between

service instances and clients and in the order in which said bytes arrive.
• It acts as the transmission agent for the set of service instances, sending bytes to clients in the order in

which the respective clients' service instances emit them.
• It ascertains the identities of clients, mapping them into a single user id space, and informs service

instances of said identities.

Each of these functions is performed in a way consistent with the APIs and capabilities of the respective
connectivity technologies.

The reusable server kernel provides a set of line drivers, one driver for each transport protocol it supports:

• APPC/VM (global, local, and private resource managers)
• IUCV
• TCP/IP
• UDP/IP
• Spool files
• MSG/SMSG
• Virtual console
• Subcom

Each driver is organized according to Figure 2 on page 12.

© Copyright IBM Corp. 1999, 2020 11

Figure 2. Line Driver Organization

The Service Instance's View
As introduced earlier, a service instance interacts with a line driver through two mechanisms:

• When a line driver starts an instance, it passes the instance a control block that describes the
partnership among the client, the line driver, and the instance. This control block is called the client
block or C-block.

• To interact with one another, the line driver and the instance exchange messages using a CMS queue
maintained by the line driver. This queue is called the line driver queue. They also enqueue and dequeue
data on a set of reusable server kernel-maintained client buffers. These buffers are accessed with the
ssClientDataGet and ssClientDataPut primitives.

This section describes the C-block and the messages exchanged through the line driver queue. 4

The Client Block, or C-Block
As mentioned in “More About Services” on page 5, the relationship between a line driver and an instance
of a service is carried out through a control block -- the C-block -- and a CMS queue. Some of the most
important information in the C-block, then, is information describing the queue to be used and how it is to
be used. This information appears in the C-block in the form of queue handles and message keys. Table 8
on page 12 summarizes the fields of the C-block.

Table 8. Client Block, or C-Block

Offset Length Usage Description

0 4 S-block pointer The address of the S-block for the service with which this instance is
affiliated.

4 8 Line driver name The name of the line driver with which the service is interacting. The
names are given in Table 9 on page 13.

4 For the server writer's convenience, macros SSPLXSRV COPY and SSASMSRV MACRO contain mappings of
the C-block and the messages exchanged by way of the line driver queue.

12 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 8. Client Block, or C-Block (continued)

Offset Length Usage Description

12 4 Line driver status word Specific information about the line driver. The bits of the status word have
these meanings:

Bit
Meaning

X'80000000'
The line driver is record-oriented:

• When supplying the instance with client input, the line driver
organizes the client's input as a sequence of records. Each record is
prefixed with a four-byte length field. The value stored in the four-
byte length field does not include the length of the length field
itself.

• When producing output for the client, the instance must organize
the output as a sequence of records, as described previously.

The MSG/SMSG, CONSOLE, SUBCOM, and SPOOL drivers are record-
oriented.

16 4 Line driver queue handle The queue handle the instance should use to receive messages from and
send messages to its associated line driver.

20 4 Line driver service ID The service ID of the line driver queue. This might be useful to the instance
in some situations.

24 4 Instance identifier An integer identifier assigned to this instance by the line driver. This
numeric identifier will never be reused by this line driver.

28 4 Instance thread ID The CMS thread ID of the thread on which the instance is running.

32 32 Instance key The key the line driver will use when it transmits messages needing the
instance's attention. Such messages will be placed on the line driver
queue, are indicative of client activity, and are organized according to
Table 12 on page 15. The instance key is the key the instance should use
in its receive (for example, QueueReceiveBlock) call.

64 32 Line driver key The key the instance should use when it transmits messages needing the
line driver's attention. Such messages should be placed on the line driver
queue, are usually indicative of the instance's having queued data for
transmission to the client, and are organized according to Table 13 on
page 16.

96 64 Mapped user ID of client The reusable server kernel's best attempt at assessing the user ID of the
client. Depending on the communication transport being used, this
assessment is made in several different ways, as shown in Table 10 on
page 14.

160 4 Total bytes into instance The total number of bytes the instance's client has sent the instance so
far.

164 4 Total bytes from instance The total number of bytes the instance has sent to the client so far.

168 4 Bytes waiting for instance The number of bytes waiting to be consumed by the instance.

172 4 Bytes waiting for line driver The number of bytes waiting to be consumed by the line driver.

176 8 Start STCK The time at which the client began communicating with the server, stored
according to the format of the Store Clock (STCK) instruction.

184 8 Reserved for IBM

192 128 Reserved for IBM

320 Varies Line-driver-specific data The data is organized differently for each line driver, as shown in Table 11
on page 14.

Table 9. Line Driver Names. All names are padded on the right with spaces (X'40').

Line Driver Name in C-Block

APPC/VM APPC

Chapter 2. Connectivity and Line Drivers 13

Table 9. Line Driver Names. All names are padded on the right with spaces (X'40'). (continued)

Line Driver Name in C-Block

IUCV IUCV

TCP/IP TCP

UDP/IP UDP

SPOOL SPOOL

MSG/SMSG MSG

Console CONSOLE

Subcom SUBCOM

Table 10. User ID Mapping Schemes

Transport Method

APPC/VM Security user ID of conversation, mapped through user ID mapping file

IUCV Field IPVMID of connection pending EIB, mapped through user ID mapping file

MSG User ID and node of origin of message, mapped through user ID mapping file

TCP/IP IP address of client, mapped through user ID mapping file

UDP/IP IP address of client, mapped through user ID mapping file

Spool User ID and node of origin of spool file, mapped through user ID mapping file

Console Literal *

Subcom Literal *

Table 11. Line-Driver-Specific Portion of C-Block

Line Driver Data

TCP/IP 0.4
IP address of client

4.4
Port number of client

8.4
Port where TCP line driver is listening

UDP/IP 0.4
IP address of client

4.4
Port number of client

APPC/VM 0.8
Security user ID of client

8.17
Locally known LU of client

IUCV 0.8
Field IPVMID from connection pending EIB

14 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 11. Line-Driver-Specific Portion of C-Block (continued)

Line Driver Data

Spool 0.8
Reserved for IBM

8.8
User ID of client

16.8
Node of client

24.4
Spool ID of reader file (character form)

MSG/SMSG 0.4
Reserved for IBM

4.8
User ID of client

12.8
Node of client

Console None present

Subcom None present

From Line Driver to Instance
A reusable server kernel line driver transmits a message to the instance each time something
"interesting" happens with respect to the client. This message serves to notify the instance that
something has happened and to advise the instance that it might wish to take a corresponding action. The
message contains status bits that indicate exactly how the relationship with the client has changed. This
message is organized according to Table 12 on page 15. The instance can pick up these notifications
using QueueReceiveBlock, 5 using the line driver queue handle and instance key from the C-block.

Each message to an instance will have its message type field set to ss_srv_msgtype_instance. 6
Usually the instance's reaction to such a notification will be to attempt to retrieve data from the client and
process it. To do so, the instance should use ssClientDataGet.

When the instance sees a message in which the line driver STOP bit is set, it should:

• Emit any remaining transmissions intended for its current client
• Transmit a STOP acknowledgement message to the line driver
• Return to its caller.

For more information, see “From Instance to Line Driver” on page 16.

Table 12. Message from Line Driver to Instance. The reusable server kernel always transmits this
message using key offset 0 and key length 32.

Offset Length Usage

0 32 Instance's key

32 4 Message type

5 QueueReceiveImmed is also acceptable.
6 Defined in SSPLXSRV COPY and SSASMSRV MACRO.

Chapter 2. Connectivity and Line Drivers 15

Table 12. Message from Line Driver to Instance. The reusable server kernel always transmits this
message using key offset 0 and key length 32. (continued)

Offset Length Usage

36 2 Client status bits
X'8000'

Client has closed connection
X'4000'

Connection closed abnormally
X'2000'

Client has finished sending
X'1000'

Line driver requests STOP
X'0800'

New data from client

From Instance to Line Driver
To send data to the client, the instance should use routine ssClientDataPut and then notify its line
driver of the new data by using QueueSend. The precise form of the message the instance should
transmit is given in Table 13 on page 16.

The instance should set the message type field to ss_srv_msgtype_linedriver in each message it
transmits to the line driver.

To inform the line driver that it has queued additional information for the client, the instance should set
the instance has queued output bit in the message it transmits to the line driver.

To acknowledge a stop request from the line driver, or to indicate that it is spontaneously stopping for its
own reasons, the instance should set the stop acknowledgement bit in the message it transmits to the line
driver.

Table 13. Message from Instance to Line Driver. The instance always transmits this message using key
offset 0 and key length 32.

Offset Length Usage

0 32 Line driver's key

32 4 Message type

36 32 Instance's key

68 2 Instance status bits
X'8000'

Stop acknowledgement
X'4000'

Instance has queued output

TCP/IP Considerations
To use TCP/IP, the server machine must be configured for TCP/IP operation. Typically this means that the
server must be enabled to use IUCV to communicate with the TCP/IP service machine. These CP directory
considerations apply:

16 z/VM: Reusable Server Kernel Prog. Guide & Ref.

• The server machine must be permitted to connect to the TCP/IP service machine. Typically the TCP/IP
service machine has IUCV ALLOW in its own CP directory entry; when this is the case, no special work is
required in the server machine's directory entry.

• The server machine's MAXCONN must be set high enough to let TCP/IP activity proceed. The reusable
server kernel's TCP/IP line driver consumes one IUCV path ID per started service.

These other considerations apply:

• When the TCP/IP line driver starts a service, it binds the service's port number onto the adapter address
specified in the START command and issues listen() with a backlog queue size of 10.

• Clients should connect to the reusable server kernel using stream sockets.
• The reusable server kernel creates all its sockets in addressing family AF_INET.
• The TCP/IP line driver uses the reusable server kernel's user ID mapping facility with connectivity
identifier TCP to map the client's IP address into a single-token user ID. 7 Because IP addresses can be
spoofed, this feature should be exploited only if the IP network is trusted.

• If the reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_TCP:
OFF

Connection is closed
ON

User ID $UNKNOWN is passed to instance

UDP/IP Considerations
Like using TCP/IP, using UDP/IP requires that the server machine be configured for TCP/IP operation.
Again, this means that the server must be enabled to use IUCV to communicate with the TCP/IP service
machine. To achieve this, follow the same procedures as you would use to set up for TCP/IP operation. Be
aware that the UDP/IP line driver consumes one IUCV path per started service, just as the TCP/IP line
driver does; plan your MAXCONN accordingly.

The following other considerations apply:

• When the UDP/IP line driver starts a service, it binds the service's port number onto the adapter
address specified in the START command.

• Clients should send to the server using datagram sockets and should expect the server's response to
come as one or more datagrams.

• The reusable server kernel considers each received datagram to be representative of a distinct
transaction. When a datagram arrives, the reusable server kernel creates a service instance and passes
the datagram's contents to the service instance through ssClientDataPut. In other words, a service
instance will only ever "see" one inbound datagram from a client. Each inbound datagram is considered
to be its own transaction and accordingly is delivered to a separate instance.

• For a given service instance, the reusable server kernel will emit as many response datagrams to the
client as are necessary, until the service indicates completion of the transaction through usual means
(stop acknowledgement bit set in IPC message to line driver).

• The UDP/IP line driver uses the reusable server kernel's user ID mapping facility with connectivity
identifier UDP to map the client's IP address into a single-token user ID. 8 Because IP addresses can be
spoofed, this feature should be exploited only if the IP network is trusted.

• If the reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_UDP:

7 In the call to ssUseridMap, parameter nodename is filled with the IP address and parameter userid is
filled with *.

8 In the call to ssUseridMap, parameter nodename is filled with the IP address and parameter userid is
filled with *.

Chapter 2. Connectivity and Line Drivers 17

OFF
Datagram is ignored

ON
User ID $UNKNOWN is passed to instance

IUCV Considerations
To use IUCV, the server virtual machine must be configured for IUCV operation. Typically this means the
following for the server's CP directory entry:

• IUCV ALLOW should be specified so that clients can connect to the server virtual machine.
• OPTION MAXCONN must be set large enough to handle the number of clients you anticipate will be

connected to the server concurrently. Allow one connection for each client.

For more information, see z/VM: Connectivity.

The following specific considerations apply to the use of IUCV. These considerations will be particularly
helpful in writing clients.

• The server kernel uses CMS's CMSIUCV and HNDIUCV macros for IUCV path management, so as not to
interfere with other IUCV or APPC/VM usage in the server virtual machine.

• The reusable server kernel opens an HNDIUCV exit for each service it starts. Usually, the name of the
exit matches the name of the service. The server operator can override this with the IUCV START
command if some other exit name must be used.

• A client wishing to connect to an reusable server kernel-managed service must specify the name of the
service's exit routine in the IPUSER field of its IUCV CONNECT parameter list.

• The server kernel issues IUCV ACCEPT with MSGLIM set to 65535. The server administrator can force a
lower value by installing an appropriate IUCV control statement in the server's CP directory entry.

• The reusable server kernel produces the client's mapped user ID by calling ssUseridMap with
connectivity identifier IUCV, specifying the local nodename and the VM user ID of the client (field
IPVMID of the connection pending EIB) as the remaining inputs.

• If the reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_IUCV:
OFF

Path is severed
ON

The IPVMID field of the connection pending EIB is passed to the instance
• The reusable server kernel lets the client use IUCV SEND with either DATA=PRMMSG or DATA=BUFFER.

However, the reusable server kernel always transmits using DATA=BUFFER.
• The reusable server kernel does not permit the client to use IUCV SEND,TYPE=2WAY. All sends to the

server must be one-way sends. If the client attempts a two-way send, the reusable server kernel will
sever the path.

• The server kernel will tolerate IUCV priority messages but never sends them.
• Data arriving from the client is queued to the affiliated service instance in the order that the message

pending interrupts arrive, without regard to any other factors.
• The server kernel is optimized for 64 KB transfers between the client and the server. In fact, the

reusable server kernel never transmits more than 64 KB in a single IUCV message. Best results will be
achieved when the client takes this optimization into account.

• The reusable server kernel does not permit the client to use IUCV QUIESCE or IUCV RESUME. It will
sever the path if the client tries these. Similarly, the reusable server kernel never uses these macros
itself.

18 z/VM: Reusable Server Kernel Prog. Guide & Ref.

APPC/VM Considerations
To use APPC/VM, the server virtual machine must be configured for APPC/VM operation. Typically this
involves one or more of these:

• Adding proper IUCV-related statements to the virtual machine's directory entry. These statements
control the names of the resources the machine is allowed to identify and the number of concurrent
conversations the machine is allowed to use. Sometimes permitting clients to connect is also
accomplished here.

• If the virtual machine is managing an APPC/VM private resource,

– The virtual machine must IPL CMS with parameter AUTOCR.
– The virtual machine should run with Fullscreen CMS off.
– File PROFILE EXEC should contain SET SERVER ON.
– File $SERVER$ NAMES must be set up to map the resource name to the name of the server program

and to identify the clients permitted to connect.

For more information, see z/VM: Connectivity.

The following specific considerations apply to the use of APPC/VM. These considerations will be
particularly helpful in writing clients.

• To allocate a conversation to the server, the client should use the LU name appropriate for the server
virtual machine's location and resource type and a TPN equal to the one used in the server's APPC
START command. For more information, see Chapter 14, “Command Descriptions,” on page 77.

• The APPC/VM line driver accepts either mapped or basic conversations. Be aware, though, that inbound
APPC record boundaries are not visible to the instance and that the instance has no control over record
boundaries in outbound APPC records.

• The APPC/VM line driver uses the connectivity identifier APPC, the LU of the client, and the user ID of
the client as input to its user ID mapping function. For more information on user ID mapping, see
Chapter 12, “Initialization and Profiles,” on page 63. The client's node is taken to be his LU (field
CPEVPLKL of the connection pending extended data) and his user ID is taken to be field IPVMID of the
connection pending EIB. If the conversation was allocated with SECURITY(NONE), the server kernel
substitutes $UNKNOWN for the X'0000000000000000' user ID CP supplies in the EIB.

• If the reusable server kernel is not able to map the user ID, then it behaves according to the setting of
configuration parameter NOMAP_APPC, as follows:
OFF

Conversation is severed
ON

The IPVMID field of the connection pending EIB (or $UNKNOWN, if SECURITY(NONE)) is passed to
the instance.

• The reusable server kernel does not support SYNCLVL(CONFIRM) or SYNCLVL(SYNCPT) conversations.
Attempts to use these will result in a sever.

Spool Considerations
These considerations apply when using spool files as a connectivity mechanism:

• Requests from clients arrive at the server virtual machine's reader from either the same node as the
server or from remote nodes through RSCS or functional equivalent.

• Spool files containing requests must be encoded using one of the following techniques:

– NETDATA encoding (NEW option of SENDFILE)
– DISK DUMP encoding (OLD option of SENDFILE)

Chapter 2. Connectivity and Line Drivers 19

If a file encoded with some other technique arrives, the reusable server kernel will CP TRANSFER it to
the user ID specified by the SPL_CATCHER configuration parameter, or if no such user ID is specified,
the file will remain in the server's reader in USER HOLD status.

No matter which encoding is used, each data record of the sent file is extracted and given to the service
as a record of input. (The spool driver is record-oriented.)

• The reusable server kernel considers only those reader files having filetype matching the value of
configuration parameter SPL_INPUT_FT. All other reader files are ignored.

• When a spool file arrives, the reusable server kernel scans the reader for new work. When it finds a file
whose filetype matches configuration parameter SPL_INPUT_FT, and whose filename matches a
started service, and which is not in a hold of some kind, the driver reads the file's data from the spool
and attempts to deliver the data to the started service.

• When SPOOL START is issued, the reusable server kernel scans the reader for new work, just as it
would scan as a result of spool file arrival, but with the following addition: if a file would have been
delivered to the newly-started service except for the fact that the file has been found to be in USER HOLD
state, the file is changed to NOHOLD and its data is delivered to the newly-started service.

• If the file name of the spool file does not match the name of any started service, and if implicit VM
routing is enabled for the spool driver, then the reusable server kernel delivers the file's data records to
the CMS service, provided the CMS service has been started. For more information about implicit
routing, see Chapter 12, “Initialization and Profiles,” on page 63.

• While processing of a file is underway, the file remains in the reader in USER HOLD state.
• If delivery of the file's data to its service fails, or if the service fails to consume all of the data of the

spool file, the file is left in the reader in USER HOLD state. Otherwise the file is purged.
• The spool driver uses the reusable server kernel's user ID mapping facility with connectivity identifier
SPOOL to map the origin user ID and origin node of the spool file into a single-token user ID. For more
information on the user ID mapping facility, see Chapter 12, “Initialization and Profiles,” on page 63.
This user ID is passed to the service instance as the client's user ID. However, if the spool driver's call
to the user ID mapping facility reveals that no mapping exists, action is taken, if NOMAP_SPOOL is:

– OFF, the file is placed in USER HOLD status and a message is issued to the server console.
– ON, the file is passed to the service instance, with the origin user ID passed directly as the "mapped"

user ID.
• The SPOOL line driver parallelizes requests. If a client sends multiple requests to the same service, the

two requests might finish in an order other than the one in which they were sent. This applies also to the
situation where the multiple requests are sent to different services.

MSG/SMSG Considerations
The CP MSG and CP SMSG commands can be used to send work to service instances being managed by
the reusable server kernel. The following considerations apply:

• Each MSG or SMSG should bear as its first token the prefix supplied on the MSG START command that
started the service. For example, to send a request called SHUTDOWN to the service started with prefix
CAL_OPER running in virtual machine SERVER, an operator might issue this command:

TELL SERVER CAL_OPER SHUTDOWN

• If the first token of the message (in the above example, CAL_OPER) does not match the name of any
request processor registered in the server, and if implicit VM routing is enabled for the MSG/SMSG line
driver, then the reusable server kernel delivers the command to the CMS service, provided the CMS
service has been started.

For more information about implicit routing, see Chapter 12, “Initialization and Profiles,” on page 63.
• Each message the MSG/SMSG line driver places in a line driver queue contains a single MSG or SMSG

sent to the server virtual machine.

20 z/VM: Reusable Server Kernel Prog. Guide & Ref.

• The MSG/SMSG line driver uses the user ID mapping facility with connectivity identifiers MSG and SMSG
to map the user ID and node of the message sender to a single-token user ID. This user ID is the one
passed to the request processor in the C-block header. However, if the driver's call to the user ID
mapping facility reveals that no mapping exists, action is taken as follows:

– If NOMAP_MSG is OFF, the message is ignored and an error message is written to the server console.
– If NOMAP_MSG is ON, the message is sent to the service instance, with the origin user ID passed

directly as the "mapped" user ID.
• The MSG/SMSG line driver is record-oriented.
• The MSG/SMSG line driver parallelizes requests. If a client sends multiple requests to the same service,

the two requests might finish in an order other than the one in which they were sent. This applies also to
the situation where the multiple requests are sent to different services.

• When the MSG/SMSG driver builds output, it prefixes each line of service output with the prefix assigned
to the service, padded to 8 characters. For example, for service CAL_OPER above, each line of output
produced by the CAL_OPER service would be prefixed with CAL_OPER.

Virtual Console Considerations
The reusable server kernel runs the server virtual machine's console in line mode. These considerations
apply:

• When entering a command for a service, the operator should use the prefix supplied on the CONSOLE
START command as the first token of the command line. For example, to send a request called
SHUTDOWN to the service called CAL_OPER, the operator should enter the following on the virtual
machine's console:

CAL_OPER SHUTDOWN

• If the first token of the command (in the above example, CAL_OPER) does not match the name of any
request processor registered in the server, and if implicit VM routing is enabled for the console line
driver, then the reusable server kernel delivers the command to the CMS service, provided the CMS
service has been started. For more information about implicit routing, see Chapter 12, “Initialization
and Profiles,” on page 63. The console driver:

– Always supplies * as the mapped client user ID.
– Is record-oriented.
– Parallelizes the services it starts. Requests sent to a given service are begun in the order in which

they are typed, but they might complete in a different order.
• When the console driver routes output to the console, it prefixes each line of service output with the
prefix assigned to the service, padded to 8 characters. For example, for service CAL_OPER above, each
line of output produced by the CAL_OPER service would be prefixed with CAL_OPER. For this reason, if it
is possible in your environment, the server virtual machine's console should be wider than 80 columns.
IBM recommends that you use at least 90 columns for the console.

Subcom Considerations
The reusable server kernel supplies a subcom, RSK, to which execs may direct commands; the output of
such commands is written to the virtual console. These considerations apply:

• When issuing a command to a service, the exec writer should use the prefix supplied on the SUBCOM
START command as the first token of the command. For example, to issue a command called
SHUTDOWN to the service called CAL_OPER, the exec writer might code:

address 'RSK' 'CAL_OPER SHUTDOWN'

Chapter 2. Connectivity and Line Drivers 21

• If the first token of the command (in the above example, CAL_OPER) does not match the name of any
request processor registered in the server, and if implicit VM routing is enabled for the SUBCOM line
driver, then the reusable server kernel delivers the command to the CMS service, provided the CMS
service has been started. For more information about implicit routing, see Chapter 12, “Initialization
and Profiles,” on page 63.

• The SUBCOM driver always supplies * as the mapped client user ID.
• The SUBCOM line driver is record-oriented.
• The SUBCOM driver does not return to the calling EXEC until the command is complete.
• The SUBCOM driver routes service output to the virtual console, in the manner of the console line driver.
• Because services do not generate return codes, the server author should not use Rexx variable rc as an

indication of the completion status of commands issued through the SUBCOM driver.

Line Driver Commands
As mentioned earlier, services are started and stopped by line drivers. This is done through line driver
commands. Largely speaking, line driver commands are present to perform these important functions:

• Starting a service is nothing more than connecting it to a reusable server kernel line driver -- the start
operation is an instruction to a line driver to prepare for communication and connect its communication
device or channel to a named service. In other words, an operator starts a service by issuing a
command that's interpreted by a specific line driver; in response to the command, the line driver begins
driving work through the service.

• Stopping a service is nothing more than informing a line driver that its communication method should be
shut down; as a consequence of this, no more client activity will be reflected to the corresponding
service through that line driver. The stop can be graceful or immediate.

Though the reusable server kernel contains a number of line drivers, the command sets understood by all
of the line drivers are roughly the same. Each line driver supports START and STOP commands and a few
queries. The syntax of these commands differs slightly from line driver to line driver to accommodate
differences in transport attributes; for example, the TCP/IP line driver expects a port number to appear in
its START command, while the spool line driver expects a file name.

For more information on the line driver commands, see Chapter 14, “Command Descriptions,” on page
77.

More Detail on Line Drivers
A line driver is nothing more than a service that supplies other services with a method to interact with
clients. Here is an overview and some information about how you can write your own line drivers.

Line Drivers as Services
Recall that in the reusable server kernel, a service is just a routine that takes input from a line driver and
which delivers output to a line driver. The line driver takes care of routing data between the client and the
service.

Consider also that a reusable server kernel line driver is itself a program that takes input from a client;
this input is just operator commands (START, for example). Similarly, a reusable server kernel line driver
is itself a program that produces output for its "client" (the operator). This output is command response
text, such as the result of a LIST command.

Because of this nature of a line driver, we can see that a line driver can be implemented as a reusable
server kernel service. To send commands to and receive responses from this service, we just have to
START it through some other line driver; we would then have a means to send it commands and gather its
responses.

22 z/VM: Reusable Server Kernel Prog. Guide & Ref.

For example, consider the TCP/IP line driver. It accepts commands -- such as START -- from its operator
and produces command responses for its operator. How does it do this? Well, it does so by way of the line
driver over which it is interacting with the operator. In other words, the TCP/IP line driver is a service
sourced by some other line driver, such as the console line driver.

Continuing this, we see that if we want to issue commands to the TCP/IP line driver by using the virtual
console, we must start the TCP/IP line driver by using the command CONSOLE START TCP. 9 If we also
wanted to control the TCP/IP line driver by way of MSG and SMSG, we could issue MSG START TCP. After
having done both of these commands, we could control the TCP/IP line driver by all of these methods:

• Typing a command on the virtual console, the first token of said command being TCP.
• Sending a CP MSG to the server virtual machine, the first token of said message being TCP.
• Sending a CP SMSG to the server virtual machine, the first token of said message being TCP.

Self-Sourced Line Drivers
Now, consider the console line driver. Like the TCP/IP line driver, the console line driver is implemented
as a service. This means that the commands supported by the console line driver, such as CONSOLE
START, are issued to the console line driver by way of some other line driver, and the responses to said
commands are delivered to the operator through said other line driver.

For example, if we were to issue MSG START CONSOLE, we would be able to use the CP MSG command
to issue commands like CONSOLE START. When we did so, the response from the console line driver
would appear at the virtual machine from which we issued CP MSG, because that's how the MSG/SMSG
line driver disposes of responses from the services it controls.

But look again at that console line driver. When the reusable server kernel starts, the console line driver's
command set (CONSOLE START and so on) is already usable by typing those commands on the virtual
console. This is possible because the console line driver is built to be self-sourcing. In other words, it is
capable of starting itself, and it does so when the reusable server kernel initializes.

The CONSOLE, SUBCOM, MSG/SMSG, and SPOOL line drivers are all self-sourcing. This means that when
the reusable server kernel initializes, all of the following methods are available for issuing commands to
these drivers:

• You can type CONSOLE START (for example) on the virtual console and the console line driver will
handle the command and write the response to the virtual console.

• You can issue a CP MSG or CP SMSG command to send a command to the MSG/SMSG line driver from
elsewhere (making sure the first token of that message or special message is MSG), and the MSG/SMSG
line driver will handle the command and respond to you through CP's MSG command.

• From a REXX EXEC, you can use ADDRESS RSK to issue a command to the SUBCOM line driver (making
sure the first token of that command is SUBCOM), and the SUBCOM line driver will handle the command
and respond by writing its output to the virtual console.

• You can send a file to the SPOOL driver; it will process the lines therein as commands and return a file to
you containing the results.

Writing Your Own Line Driver
The notion that the reusable server kernel implements line drivers as services permits the server author
to add his own line drivers. To add a line driver, the server author just uses ssServiceBind in his
RSKMAIN to bind the service, just as he would do for any other service he writes, except:

• He must at least specify service type ss_srv_srvtype_ld in his call to ssServiceBind. This informs
the reusable server kernel that the service being bound is in fact a line driver.

• If he is writing a self-sourced line driver, he must specify ss_srv_srvtype_ldss in his call to
ssServiceBind. This informs the reusable server kernel that the service being bound is a self-sourced
line driver.

9 Note that TCP is the service name of the TCP/IP line driver.

Chapter 2. Connectivity and Line Drivers 23

After calling ssServiceBind, RSKMAIN should proceed as usual, eventually calling ssServerRun.
These considerations apply:

• The reusable server kernel does not take any special action for regular line drivers; the server author
must use PROFILE RSK to start his line driver (for example, CONSOLE START MYDRIVER to enable his
line driver to interact with the server operator through the virtual console).

• For a self-sourced line driver, the reusable server kernel does the following shortly after ssServerRun
begins:

– It drives the line driver's initialization entry point (known because of the ssServiceBind call the
author placed in RSKMAIN).

– If initialization worked, the reusable server kernel creates a thread and runs the line driver's service
routine (again, known because of the recently-performed ssServiceBind) on that thread, passing
the service routine a C-block address of X'00000000'.

The C-block address being zero is the self-sourced line driver's cue that it should initialize its device
and prepare to accept its command set over its device.

Finally, the reusable server kernel provides entry point ssServiceFind so that an author-supplied line
driver can retrieve descriptive information saved by ssServiceBind. This permits author-supplied line
drivers to respond to their equivalent of the IBM-supplied drivers' START command. ssServiceFind
takes a service name as input and returns the address of the service's S-block. For more information, see
Table 2 on page 6.

Some of the fields of the S-block are relevant to the server author only in the context of author-supplied
line drivers. These are:

• The current start count is a counter used to indicate the number of START commands that are current
against the service. The counter is used in this manner:

– If the counter is zero when a line driver performs a START of this service, the line driver should drive
the service's initialization routine prior to letting the service's service routine get control.

In any case, the line driver should increment the counter just prior to driving the service's service
routine.

– When the line driver performs a STOP operation, it should first stop all its instances of the service's
service routine and then decrement the counter. If the counter becomes zero as a result of this
decrement, the line driver should drive the service's termination routine.

• The lockword is intended for use with the Compare and Swap instruction (CS). It is a line driver's means
for ensuring mutual exclusion in examination and setting of the start count and in the driving of a
service's initialization and termination routines. If the lock word is zero then it is considered not to be
held. Any nonzero value marks the lock as held. If an attempt to get the lock through CS fails, call
ThreadYield before trying again.

Authorization
Permission to start and stop services can be controlled through configuration parameter AUTHCHECK_LD
and the AUTH command set. This capability lets the server administrator set up subordinate operators
who can control some services but not others. For more information, see “Other Services' Use of
Authorization” on page 40.

24 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 3. DASD Management

Authors of certain kinds of servers will require a DASD subsystem capable of high volume, high speed,
parallelized I/O with a block-oriented model. The reusable server kernel DASD subsystem meets these
requirements, is integrated with CMS Application Multitasking, and recognizes the CMS thread, not the
VCPU or the virtual machine, as the entity that performs DASD I/O. Specific programming information is
found in the ssSgp API descriptions, and operator-oriented information is found in the descriptions of the
SGP command set.

DASD Subsystem Overview
The reusable server kernel accomplishes its DASD objectives through the following scheme:

• Defined to the reusable server kernel are one or more sets of CMS minidisks, each such minidisk
formatted at 4 KB (kilobyte) blocksize and reserved (CMS FORMAT and RESERVE commands). Such
minidisks provide the raw storage for the DASD model implemented by the server kernel. Each set of
such minidisks is called a storage group. 10

• For each storage group, the server kernel creates one or more VM data spaces. The total number of
pages in the data spaces is equal to the total number of data blocks on the constituent minidisks.

• Through MAPMDISK, each storage group's minidisk set is mapped into the pages of its data space
set. 11

• To read DASD blocks, the reusable server kernel performs MVCL from the appropriate pages in the
appropriate data space. In response to this, CP pages in the mapped DASD blocks as required. Paging is
a virtual machine's fastest route through CP to the DASD; further, significant amounts of real and
expanded storage are used by CP on the virtual machine's behalf to "cache the DASD blocks" (that is,
keep the data space pages resident).

• To write DASD blocks, the reusable server kernel performs MVCL to the appropriate pages in the
appropriate data space and follows the MVCL with MAPMDISK SAVE. After MAPMDISK SAVE, the
reusable server kernel waits in a thread-blocking fashion for the save-complete external interrupt to
arrive. Control returns to the calling thread only when the write is entirely complete.

The techniques described above are used by the server kernel on the server application's behalf; see
Figure 3 on page 26. 12 In addition, all code and data structures involved in this scheme exhibit the
execution traits desired in a multithreaded CMS model: they are all thread-blocking, thread-synchronous,
31-bit-capable facilities.

10 The reusable server kernel contains no support for linking storage group minidisks at server startup or
performing the CMS FORMAT and RESERVE commands against minidisks prior to attempting to add them to
a storage group for the first time. These initialization processes need to be taken care of by the server
operator using traditional methods. Further, the reusable server kernel DASD engine requires that its
storage group minidisks be formatted at 4 KB and reserved. It will not operate upon minidisks that do not
meet these criteria.

11 For FBA DASD, each minidisk must start at a multiple-of-eight block number on the real DASD volume for
data space mapping to work correctly.

12 When VM Data Spaces are not available, the reusable server kernel uses DIAGNOSE X'250' in
asynchronous, MDC-enabled fashion instead; if for some reason DIAGNOSE X'250' doesn't work, then
DIAGNOSE X'A4' is used.

© Copyright IBM Corp. 1999, 2020 25

Figure 3. Reusable Server Kernel DASD

Limits
The reusable server kernel DASD subsystem exhibits these limits:

• The maximum number of storage groups is 1024.
• The maximum number of data blocks per storage group is X'FFFFFFFF' (16 TB).
• The maximum number of minidisks per storage group is 13,000.
• The total number of dataspace-mapped DASD blocks cannot exceed X'FFFFFFFF' (16 TB). 13

13 The server kernel automatically switches to DIAGNOSE X'250' when this limit would be exceeded.

26 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Modes of Operation
A given storage group can be started in one of two I/O modes:

• Block R/O: the server program can read the DASD blocks but cannot write them. It is permissible for one
or more of the minidisks in the storage group to be linked read-only.

• Block R/W: the server program can read or write the DASD blocks individually. All minidisks in the
storage group must be linked read/write.

Each storage group's I/O mode is selected individually.

Programming Interfaces
Management and control of storage groups can be done through a set of storage group APIs. Callable
APIs are provided to:

• Create and delete storage groups
• Vary storage groups online and offline
• List and query the defined storage groups
• Perform storage group I/O
• Find the number of a started storage group, given its name

These entry points all begin with name ssSgp and are described later in this book.

Administrator and Operator Considerations
A set of operator commands implements a subset of the storage group APIs. Commands are available to
perform these functions:

• Create and delete storage groups
• Start and stop storage groups
• List and query the defined storage groups

For more information, see Chapter 14, “Command Descriptions,” on page 77.

Creating a Storage Group
To build up a storage group from scratch, the server administrator performs these steps:

Chapter 3. DASD Management 27

Table 14. Building a Storage Group Step

Step Task Command Description Page

1 Select some
minidisks to make up
the storage group.

CP LINKCMS
FORMAT

Format each minidisk
at 4 KB blocksize and
reserve it. Make sure
the server's virtual
machine links the
minidisks at startup
time, for example,
through PROFILE
EXEC or PROFILE
RSK. If FBA DASD is
used, make sure
each minidisk starts
on a multiple-of-
eight block boundary
on the real FBA
device.

N/A

2 Create the storage
group.

SGP CREATE This informs the
reusable server
kernel of the
minidisks' existence
and instructs it to
treat them together
as a storage group.
The server kernel
records this
information in the
storage group
configuration file.

“SGP CREATE” on page 174

3 Start the storage
group.

SGP START This makes the
storage group
available for I/O and
the ssSgpRead and
ssSgpWrite APIs
can be used against
it. You will probably
want to put the SGP
START command in
PROFILE RSK so
that the storage
group starts each
time the server
starts.

“SGP START” on page 179

Changing the Minidisks in A Storage Group
To change the minidisk configuration of a storage group use these steps:

Table 15. Changing the Minidisk Configuration

Step Task Command Description Page

1 Stop the storage
group

SGP STOP This brings the
storage group offline.

“SGP STOP” on page 180

28 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 15. Changing the Minidisk Configuration (continued)

Step Task Command Description Page

2 Delete the storage
group

SGP DELETE This removes the
storage group's
definition from the
storage group
configuration file.

“SGP DELETE” on page 175

3 Create the storage
group anew

SGP CREATE This records the new
storage group
definition in the
storage group
configuration file.

“SGP CREATE” on page 174

4 Start the storage
group

SGP START This makes the
storage group
available for I/O.

“SGP START” on page 179

Deleting A Storage Group
To delete a storage group use these steps:

Table 16. Deleting a Storage Group

Step Task Command Description Page

1 Stop the storage group SGP STOP This brings the storage group
offline.

“SGP
STOP” on
page 180

2 Delete the storage group SGP DELETE This removes the storage
group's definition from the
storage group configuration file.

“SGP
DELETE”
on page
175

Chapter 3. DASD Management 29

30 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 4. File Caching

Servers having file-read-intensive workloads will find it beneficial to cache frequently-read files. Usually
the application relies upon CMS's FSREAD cache and minidisk caching to achieve good performance, but
these facilities have their limits.

To overcome these limits and extend the caching facilities available to the server writer, the reusable
server kernel offers a file caching scheme based on VM Data Spaces. 14 A file cache is simply a data space
whose contents -- files -- are controlled for the server by the server kernel. The server author decides the
number and sizes of file caches he creates; he has both APIs and operator commands at his disposal for
both creating and deleting file caches. Using APIs alone, the server program requests that files be cached
in these data spaces; in response to the server's requests, the server kernel reads files using conventional
CMS file APIs and holds them in data spaces, removing them either when they become stale or when data
space storage becomes constrained. When storage constraints are an issue, the server kernel removes
files in LRU (least recently used) fashion. Such removal is not visible to the server program.

Managing the Set of Caches
To create a file cache, the server operator can issue the CACHE CREATE command, or the server itself can
call entry point ssCacheCreate. The cache is given an eight-byte name which the server kernel uses
unchanged in a call to ssMemoryCreateDS to create the corresponding data space. Thus, cache names
must be unique among all subpools the server kernel manages. The size of the cache is specified in
pages.

To delete a cache, use either the CACHE DELETE command or entry point ssCacheDelete. The
command or API call will not complete until all cached files are closed. Further, once the deletion has
started, the caching of new files will not be permitted.

To obtain statistical information about a particular file cache, the server can call ssCacheQuery.
Similarly, the server operator can issue the CACHE LIST command to see tabular output reflecting
statistical information about all of the caches known to the server kernel.

For more information on how the server kernel maintains monitor data for each file cache, see Chapter
13, “Monitor Data,” on page 71.

File Operations
To cache a file, the server calls entry point ssCacheFileOpen, supplying the name of the file to be
cached. Any name acceptable to CSL routine DMSOPEN can be used. The server kernel keeps track of
cached files using these DMSOPEN-acceptable names. In response to the call, the server kernel loads the
file into the cache, making it ready for reading through another entry point, ssCacheFileRead; in
addition, if the server kernel was able to load the file contiguously into data space storage, it informs the
caller of this, returning to it the ALET and address the server can use to access the cached file directly. In
any case, ssCacheFileOpen returns the size in bytes of the cached file. Finally, note that the file can be
opened multiple times simultaneously; this permits open-read-close logic to be applied freely on a per-
client basis.

Once the server has opened the file, it can read the file's data through one of two methods:

• If the file was loaded contiguously, the server can enter AR mode and read the data directly from the
data space, using the ALET, address, and length returned by ssCacheFileOpen.

• If the file was not loaded contiguously, or if the server author chooses not to use AR mode, the server
can call entry point ssCacheFileRead to read the data. This entry point's inputs are simply a file

14 If VM Data Spaces are not available, the file caching facilities of the reusable server kernel do not work.

© Copyright IBM Corp. 1999, 2020 31

token, a zero-origin byte offset, and a length. It simply reads the cached data into the buffer passed by
the caller. The server kernel permits multiple ssCacheFileRead calls to be in progress simultaneously
against a given file.

When the server is done reading the file, it issues call ssCacheFileClose. The file remains in the cache
for subsequent use, unless it becomes stale or is pushed out because of storage contention.

Transformations
Recognizing that the server is likely to need to perform code page transformations on the files it
manipulates, the server kernel includes a translation function with its caching support. When the server
opens a file, it specifies a translation table to be applied to the file's data as it is loaded into the cache.
The translation table can come from these places:

• The server kernel offers an entry point, ssCacheXlTabSet, which the server can call to identify a
translation table that should be eligible for use as part of file loading. The table is known by an integer
identifier and is nothing more than a 256-byte table to be applied to the file's data using the Translate
(TR) instruction. The integer identifier supplied to ssCacheXlTabSet is also one of the inputs to
ssCacheFileOpen.

• For the server author's convenience, the server kernel predefines certain tables:

Table ID Table Function

0 No translation at all

1 1047 to 819 (EBCDIC to ASCII)

2 819 to 1047 (ASCII to EBCDIC)

The server kernel recognizes these tables' identifiers without the server having to invoke
ssCacheXlTabSet first.

Just as it might have to perform code page translation on files it serves to clients, the server might also
have to perform record boundary delimiter transformations. For example, a UNIX® client might want the
records to be delimited by a line feed (X'0A'), while a DOS client might want a carriage return and line
feed (X'0D0A') at the end of each record. Depending on the file's contents, it might even be appropriate
not to insert any delimiters at all - a .JPG file, for example, falls into this category. Recognizing this, the
server kernel lets the caller tell ssCacheFileOpen what should be done about record delimiting. Both
line-end marker and prefixed record-length schemes are supported.

Example
Suppose that an HTTP server needs to serve file INDEX HTML VMHOME:EWEBADM.VMPAGE to a browser.
As part of serving this file to the browser, the HTTP server will need to translate the file's data from
EBCDIC to ASCII and will need to insert a CR-LF pair (X'0D0A') after each record. To serve the file, the
server would call ssCacheFileOpen, requesting that appropriate data translation and record massaging
be done as part of the load into the cache. The server kernel would return a file token as an output of
ssCacheFileOpen, and if the file had been loaded contiguously into the data space, it would also return
the ALET and address of the data space buffer in which the file resides. Finally, if the load is successful,
ssCacheFileOpen also returns the size in bytes of the loaded, transformed file.

The server can read the file's contents using either ssCacheFileRead or AR mode. However, if all that is
needed is to send the file's contents to the browser, the server can just call ssClientDataPut, passing
it the ALET, address, and length returned by ssCacheFileOpen.

After the file has been sent, the server issues ssCacheFileClose. The file remains in the cache for the
next client.

32 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Stale Data
The server kernel's file caching scheme accommodates the notion that file contents change over time and
that cached information can become stale as a result. When the server calls ssCacheFileOpen, the
server kernel checks the file's update time and compares it against the update time of the cached copy. If
there is a discrepancy, the file is reloaded. The currently cached copy -- now stale -- is disposed of
according to whether it is still in use (that is, is still open); if it is not in use it is dropped immediately, but if
it is still open it is marked as stale and dropped when the server finally closes it. This scheme preserves
consistency for open files while providing a means for new opens to see the latest version of a file.

Cache Utilization
It is important to recognize that the server kernel can have more than one copy of a file in a cache at one
time. This can happen in these situations:

• If a file is loaded into a cache using several different code page translations or several different record
delimiting schemes, a cached copy will be kept for each such representation requested. For example, if
INDEX HTML were opened using EBCDIC-to-ASCII and CR-LF delimiting, and then it were opened again
using no code page translation and CMS two-byte-length record prefixing, the server kernel would keep
both copies in memory.

• If a cached file is still open, it will not be dropped from the cache, even if the server kernel detects that
it has become stale. The stale file will not be dropped until it is closed.

Constraints
The server author and administrator should keep these file caching constraints in mind:

• File cache names are used directly as input to ssMemoryCreateDS. The server writer and
administrator must work to avoid name conflicts.

• The number of files that can be held in a cache is not strictly limited, but the overall size of a file cache is
limited to 2 GB (the size of a data space). This means that a transformed file cannot exceed 2 GB. Note
that multiple file caches are supported.

• The number and aggregate size of data spaces creatable by the server is controlled by XCONFIG
ADDRSPACE in the server virtual machine's CP directory entry.

• Files whose transformed size would be greater than 16 MB (megabytes) are never cached contiguously.

Chapter 4. File Caching 33

34 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 5. Authorization

Overview
Many servers appear to their clients as access methods for server-held objects. File system servers are a
common example of these. For example, the CMS Shared File System implements an object class called
file supporting a certain set of operations and an object class called directory supporting another set of
operations. The users of the Shared File System transmit requests to an SFS server, asking the server to
perform operations on these objects. The SFS server performs the operations and returns appropriate
responses to the clients. No operations are possible against SFS-held objects other than those defined on
objects of class file or directory.

Servers implementing such access methods usually require that the operations requested by clients be
performed on the objects if and only if certain authorization guidelines are met. Consider again the Shared
File System: to write to a file, a user must have write authority to it. 15 To support this checking of
operations, the Shared File System contains its own authorization engine for managing the authorization
rules. The authorization model used by the CMS Shared File System is built around objects, users, and
actions; all of the interfaces to the authorization engine serve to manipulate and interrogate a rule base
which records "who can do what to whom". Some of these interfaces, such as the GRANT AUTHORITY
and REVOKE AUTHORITY commands, are externalized. Others are internal-only interfaces for the server's
exclusive use.

The general model for authorization exemplified by the Shared File System applies to many different
kinds of servers. To ease the development burden of the server writer, the reusable server kernel
provides a set of APIs implementing a general-purpose authorization engine. The authorization model
implemented by the reusable server kernel is an object-user-action model, just like the one implemented
by the Shared File System. To use the reusable server kernel's authorization facility, the server author
calls the API, performing such actions as defining an object class, defining a particular object, permitting a
user to perform an operation, and testing whether an operation is permissible. A set of commands,
intended for operator use, parallels the APIs provided.

The reusable server kernel authorization engine treats object classes, object names, user names, and
permissions as abstract entities. It does not associate any particular meaning with these items. It merely
facilitates the implementation of an authorization strategy by providing a rule engine capable of building,
maintaining, and interrogating a rule base describing a relationship of objects, users, and actions. The
object classes and operations defined, the objects defined, the users defined, and the permissions
granted are left for the server writer to decide.

Entry Points
The reusable server kernel authorization API offers entry points that perform a number of different
operations on the rule base. In particular, these are some of the programming interfaces available:

Table 17. Programming Interfaces

Programming Interfaces Description Page

ssAuthCreateClass Creates an object class and
associates a set of operations with it.

“ssAuthCreateClass — Create an
Object Class” on page 217

15 In truth, to open a file for write, the user must have write authority to it, even if he never actually writes to
the file.

© Copyright IBM Corp. 1999, 2020 35

Table 17. Programming Interfaces (continued)

Programming Interfaces Description Page

ssAuthCreateObject Creates a named object as an
instance of a particular object class.

“ssAuthCreateObject — Create an
Object” on page 219

ssAuthDeleteClass Removes all objects of a given class
from the rule base and optionally
removes the class from the rule
base.

“ssAuthDeleteClass — Delete a
Class” on page 221

ssAuthDeleteObject Removes all rules for a given object
from the rule base and optionally
removes the object from the rule
base.

“ssAuthDeleteObject — Delete an
Object” on page 223

ssAuthDeleteUser Removes all rules for a given user
from the rule base.

“ssAuthDeleteUser — Delete a
User” on page 225

ssAuthPermitUser Adds, modifies, or deletes a specific
rule in the rule base.

“ssAuthPermitUser — Permit a
User” on page 233

ssAuthTestOperations For a given user, object, and set of
operations, determines which of the
specified operations are permissible.

“ssAuthTestOperations — Test
Operations” on page 242

A set of queries and some maintenance APIs are also provided.

Naming Conventions and Other Limits
To name objects, users, classes, and permissions, the authorization API uses character strings composed
from an unrestricted alphabet. 16

Table 18 on page 36 describes other conventions related to the naming of these items:

Table 18. Authorization API Naming Conventions

Item Format Length

Object V 1-256

User V 1-64

Class F 8

Action F 4

Note:

• The authorization API supports a maximum of 32 operations per object class.

Group Authorization Considerations
The reusable server kernel's authorization model and API extend easily to group authorization
situations. 17 To implement a group scheme, the programmer can perform the mapping of user ID to

16 "Unrestricted alphabet" means that any of the 256 8-bit code points can appear in these names.
17 In group authorization, access rights are extended to users not based on their individual identities but

rather on their membership in a group of some kind. Unix and VMS are two systems where file authorization
is based partially on users' organization into groups.

36 z/VM: Reusable Server Kernel Prog. Guide & Ref.

group name outside the scope of the reusable server kernel's authorization API and use the group names
as "user IDs" in the reusable server kernel authorization API calls. In cases where group authorization
provides acceptable security, using the authorization API in this way reduces the size of the authorization
data and thereby decreases the time needed to search it.

Persistent Storage of Authorization Data
The reusable server kernel keeps the authorization database in several disk files. These disk files let the
authorization data persist from one invocation of the server program to the next.

The general idea is that the authorization database is divided into several files:

Table 19. Authorization Data File Format

File Format Description Page

Data Contains class, object, user and rule
definitions. The records in this file are
chained to one another to build up
logical groupings, such as the set of
rules associated with a given object or
the set of objects belonging to a given
class.

“The Data File” on page 367

Index Contains hash tables that partition the
data file records into equivalence
classes (that is, hash buckets) to
improve the performance of searches.

“The Index File” on page 369

Log Contains all tracking of the writes to the
index and data files for recovery
purposes.

“The Log File” on page 370

The reusable server kernel is able to keep its authorization data in any of these disk repositories: 18

• On CMS minidisks
• In the CMS Shared File System

All of the authorization files must be kept in the same kind of repository. Mixing repositories is not
permitted.

Recognizing the critical nature of authorization data, the reusable server kernel manages its authorization
files such that the authorization database can be recovered (that is, its internal consistency can be
restored) if some kind of failure occurs. The management and recovery scheme used is a function of the
repository in which the data files reside. When CMS minidisks are used, the reusable server kernel keeps
twin copies of the authorization database and also keeps a log file to enable recovery after a failure. When
the CMS Shared File System is used, just one copy of the authorization database is kept and the Shared
File System's commit/backout facilities are exploited to maintain consistency.

When the reusable server kernel starts, it initializes the authorization data base (makes it completely
empty) if it appears that the database has never been initialized. This assessment is made using the
following criteria:

• Shared File System: if the index file appears not to be initialized, then an empty index is written.
• Minidisks: if the log file appears not to be valid, or if the log file appears valid but the index file appears

not to be initialized, then an empty index is written.

You should back up your authorization index and data files frequently enough so that you can restore
them without loss of data in case they are initialized accidentally.

18 Configuration parameter AUT_LOCATION file tells the reusable server kernel where the data is being kept.

Chapter 5. Authorization 37

The following sections give more specifics on the details of the various repositories.

Using CMS Minidisks
To keep the authorization files on minidisks, set configuration parameter AUT_LOCATION appropriately
and supply names for:

• Copy 1 of the data file (configuration parameter AUT_DATA_1),
• Copy 2 of the data file (configuration parameter AUT_DATA_2),
• Copy 1 of the index file (configuration parameter AUT_INDEX_1),
• Copy 2 of the index file (configuration parameter AUT_INDEX_2),
• The authorization log file (configuration parameter AUT_LOG).

These files do not all have to be on the same minidisk; you can spread them across minidisks if you
want. 19 The only constraint is that for each minidisk on which authorization files reside, there must be no
open-for-output files on the minidisk other than the authorization files themselves. In other words, do not
put any of your server's other output files on the same minidisk with authorization data files. If this
constraint is not observed then the reusable server kernel's commit and recovery logic will not work and
if a failure occurs you might end up with unrecoverable authorization data.

When minidisks are used, the reusable server kernel guarantees consistency by using the log file to
record changes that will be made and then applying the changes to the two copies sequentially. If an
entire update does not complete successfully, the reusable server kernel uses the log file to decide how
to recover the consistency of the authorization data and make the two copies identical again. If the
update was completely applied to the first copy and then the update of the second copy failed, realigning
the two copies does not lose the update. If the update was never completely applied to the first copy, the
update will be backed out.

Using the CMS Shared File System
To use the CMS Shared File System, set configuration parameter AUT_LOCATION appropriately and
supply names for:

• Copy 1 of the data file (configuration parameter AUT_DATA_1),
• Copy 1 of the index file (configuration parameter AUT_INDEX_1),

The data and index files need not reside in the same directory or even the same file pool server. 20 The
directories in which the files reside can be accessed directories or unaccessed directories.

When the Shared File System is used, the reusable server kernel does not maintain a second copy of the
data and index files and it does not keep a log file; it ignores the configuration parameters associated with
these extra files (configuration parameters AUT_DATA_2, AUT_INDEX_2, and AUT_LOG). This is made
possible because the Shared File System supports commit and backout semantics; the reusable server
kernel does not have to manage recovery on its own.

When the Shared File System is used, the reusable server kernel uses this technique to maintain
consistency of the authorization data:

1. At startup, the reusable server kernel gets a work unit ID and opens the two files on that work unit.
2. Each time an API call changes the database, the reusable server kernel writes the changes to the

index and data files and then commits the work unit.
3. If one of the writes fails or the commit fails, the reusable server kernel backs out the work unit.

This method guarantees that the index and data files are always committed together and that the
committed copies are always consistent with one another.

19 In fact, it would be a good idea to put the files for copy 1 on one physical DASD pack and the files for copy 2
on a different physical DASD pack.

20 If you put the two files in two different servers, each server must be at least VM/ESA 1.1 or later.

38 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Migrating Among Repositories
To migrate your authorization data to the Shared File System from minidisks, follow the instructions in
Table 20 on page 39.

Table 20. Migrating Authorization Data from Minidisks to SFS

Step Description Command Page

1 Make sure the server shuts down
normally so that the two copies of
authorization data are each
internally consistent and identical
to one another.

SERVER STOP “SERVER STOP” on page 173

2 Move one copy to the desired
Shared File System server(s) and
directory(ies).

CMS's COPYFILE n/a

3 Change the reusable server
kernel's AUT_ configuration
parameters to reflect the new
names and locations of the
authorization data.

Use XEDIT to change
PROFILE RSK.

“Configuration Parameters” on page
65

Migrating from the Shared File System to minidisks is a little more complicated; follow the instructions in
Table 21 on page 39.

Table 21. Migrating Authorization Data from SFS to Minidisks

Step Description Command Page

1 Duplicate your index and data
files so that you have two
identical copies of each (four files
in all).

CMS's COPYFILE n/a

2 Install the copies on the target
minidisks.

CMS's COPYFILE n/a

3 Using CMS Pipelines, an EXEC,
XEDIT, or some other tool, make
a file of the following format and
content (this will be the initial log
file):

• RECFM F
• LRECL 256
• Put one record in the file. The
first twelve bytes of the record
should be
X'0000000200000002000000
00'. The content of the
remainder of the record is
unimportant.

Install this file on the target
minidisk.

n/a

Chapter 5. Authorization 39

Table 21. Migrating Authorization Data from SFS to Minidisks (continued)

Step Description Command Page

4 Update your reusable server
kernel configuration parameters
to point to the new target
repository and update the names
of the index, data, and log files.

Use XEDIT to change
PROFILE RSK.

“Configuration Parameters” on page
65

Parallelism
The reusable server kernel lets multiple threads read the authorization data simultaneously but requires
updating threads to serialize and perform their work exclusively of all other threads (in other words, either
multiple readers are allowed or one writer is allowed).

Administrative Commands
The reusable server kernel provides a service, called AUTH, which provides a command interface to many
of the authorization APIs. This command set is useful in thses circumstances:

• Commands to manipulate the authorization database can appear in PROFILE RSK and be issued each
time the server starts.

• An operator can manipulate the authorization database by sending authorization commands to the
AUTH service through the CP MSG command or by typing them on the server console.

For more information on the authorization command set, see Chapter 14, “Command Descriptions,” on
page 77

Other Services' Use of Authorization
The presupplied services and line drivers are capable of using the authorization database as a way to
protect their command sets. For example, the AUTH service -- that is, the implementer of the AUTH
command set -- offers a means by which the server administrator can instruct it to examine the
authorization database to determine whether a certain user is permitted to issue AUTH commands. The
starting and stopping of author-supplied services can be similarly protected.

As shipped, all such controls are inactive, that is, no permission checking is in effect. The following
sections describe how such authorization checking can be activated.

Overview
The basic idea is that certain services and line drivers interrogate a corresponding configuration
parameter to decide whether to check authorizations for the command sets they implement. When a
service or line driver's authorization configuration parameter is set ON, the service or line driver calls
ssAuthTestOperations each time it handles a command. The purpose of this call is to determine
whether the requesting user has permission to issue the prospective command. If the call to
ssAuthTestOperations succeeds, the line driver or service will attempt the requested operation.
Table 22 on page 40 generally illustrates how a line driver or calls ssAuthTestOperations.

Table 22. Line Driver and Service Calls to ssAuthTestOperations

Coordinate Value

Object Name of the service being manipulated.

User The user ID attempting to manipulate the service.

40 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 22. Line Driver and Service Calls to ssAuthTestOperations (continued)

Coordinate Value

Action For a start, STRT. For a stop, STOP. For connection
reporting, RPRT. For actual use thereof, EXEC.

Activation
To activate authorization checking for line drivers and services, perform the these initialization steps with
respect to the authorization database:

Table 23. Activating Authorization Checking for Services and Line Drivers

Step Task Command Description Page

1 Create an object
class to which
objects
representing
services will belong.

AUTH CRECLASS The name of the object
class is not important,
but operations STRT,
STOP, RPRT, and EXEC
must be defined on
objects of the class.

“AUTH CRECLASS” on
page 88

2 Create an
authorization object
corresponding to
the service that will
be protected.

AUTH CREOBJECT You should create the
new object as a member
of the class you just
created with AUTH
CRECLASS. The name of
the new object should
match the name of the
service as it was given in
the ssServiceBind
API call.

“AUTH CREOBJECT” on
page 89

3 Grant privileges for
each user who will
be permitted to
START the service.

AUTH PERMIT Arrange for the user ID
to have permission to
perform the STRT
operation on the object
that represents the
service.

“AUTH PERMIT” on page
96

4 Grant privileges for
each user who will
be permitted to
STOP the service.

AUTH PERMIT Arrange for the user ID
to have permission to
perform the STOP
operation on the object
that represents the
service.

“AUTH PERMIT” on page
96

5 Grant privileges for
each user who will
be permitted to
enable a line
driver's connection
reporting feature.

AUTH PERMIT Arrange for the user ID
to have permission to
perform the RPRT
operation on the object
that represents the
service.

“AUTH PERMIT” on page
96

6 Grant privileges for
each user who will
be permitted to use
a given service.

AUTH PERMIT Arrange for the user ID
to have permission to
perform the EXEC
operation on the object
that represents the
service.

“AUTH PERMIT” on page
96

Chapter 5. Authorization 41

Once the authorization database has been set up, it remains to inform line drivers and services that they
should actually check the authorization data you've configured. This is accomplished by using the CONFIG
commands:

• To enable line drivers' checking of your newly-created authorization records, issue CONFIG
AUTHCHECK_LD ON. When you do this, each line driver will handle a given user's START or STOP
commands only if the authorization data permits it.

• To inform a given service that it should check your newly-created authorization records, set the
service's appropriate configuration parameter (see Table 24 on page 42 and Table 31 on page 66).

Table 24. Authorization Configuration Parameters

Service Parameter Page

AUTH AUTHCHECK_AUTH “CONFIG AUTHCHECK_AUTH” on page
112

CACHE AUTHCHECK_CACHE “CONFIG AUTHCHECK_CACHE” on page
113

CMS AUTHCHECK_CMS “CONFIG AUTHCHECK_CMS” on page
114

CONFIG AUTHCHECK_CONFIG “CONFIG AUTHCHECK_CONFIG” on
page 115

CP AUTHCHECK_CP “CONFIG AUTHCHECK_CP” on page 116

ENROLL AUTHCHECK_ENROLL “CONFIG AUTHCHECK_ENROLL” on
page 117

MONITOR AUTHCHECK_MONITOR “CONFIG AUTHCHECK_MONITOR” on
page 119

SERVER AUTHCHECK_SERVER “CONFIG AUTHCHECK_SERVER” on
page 120

SGP AUTHCHECK_SGP “CONFIG AUTHCHECK_SGP” on page
121

TRIE AUTHCHECK_TRIE “CONFIG AUTHCHECK_TRIE” on page
122

USERID AUTHCHECK_USERID “CONFIG AUTHCHECK_USERID” on
page 123

WORKER AUTHCHECK_WORKER “CONFIG AUTHCHECK_WORKER” on
page 124

All of the aforementioned configuration parameters can be set in PROFILE RSK each time the server
starts. For more information, see “PROFILE RSK” on page 65.

42 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 6. Enrollment

One problem common to many servers is the notion of enrolling users. In the abstract, this problem is
nothing more than implementing or exploiting some kind of indexed access method. Users' records are
kept in a repository of some kind and inserted, removed, and retrieved using the chosen access method,
the user identifiers serving as indices.

Recognizing this commonality, the reusable server kernel implements an indexed access method suitable
for use in storing enrollment data. The server kernel offers an API for programmed manipulation of
enrollment sets -- record insertion, deletion, and retrieval, to name a few operations -- and it offers a
corresponding command set that lets the server operator perform these operations easily. The command
set is implemented as a service, so it is available through any of the server kernel's line drivers -
CONSOLE, MSG, and so on.

The reusable server kernel stores related enrollment records together in an enrollment set. Each
enrollment set bears an eight-byte name; the server operator refers to an enrollment set by that name
when he uses the ENROLL command set, and the server author refers to an enrollment set by that same
name when he uses the enrollment API. The server kernel can manage multiple enrollment sets
concurrently.

To ensure good performance, the reusable server kernel exploits VM Data Spaces to hold enrollment sets.
When the server kernel is instructed to make an enrollment set ready for use, it reads the enrollment
records from a Shared File System file into a VM Data Space, organizing them in the data space for quick
access. Each enrollment set resides in its own data space, and a data space being used for enrollment
contains nothing but records of that enrollment set. Note that the reusable server kernel's enrollment
facility requires the underlying processor to support VM Data Spaces. Processors not offering VM Data
Spaces cannot support the enrollment facility.

Because a data space can be up to 2 GB in size, and because z/VM lets a single virtual machine manage
many such data spaces concurrently, the number of enrollment records the reusable server kernel can
manage has no limit, practically speaking. The data structures used ensure that the server kernel can hold
several hundred thousand enrollment records in a single data space without appreciable lookup,
insertion, or replacement delays.

As the enrollment records change, the reusable server kernel appends information to the corresponding
SFS file, said appended records being indicative of the changes that are occuring against the enrollment
set. At an appropriate time, the operator or the server program itself indicates that it is time to commit the
changes; in response to this, the server kernel uses CSL routine DMSCOMM to commit the changes to the
SFS file. Each enrollment set's corresponding SFS file is open on its own work unit, each such work unit
being used for no other purpose than I/O to a single enrollment file.

Eventually the server operator or server program determines that activity to an enrollment set is complete
and instructs the reusable server kernel to unload the enrollment data. Theserver kernel closes the
corresponding SFS file, deletes the data space, and the enrollment set is thereby closed. If the server
program terminates and the enrollment set is still open, the server kernel closes it automatically before
terminating, committing any uncommitted changes. If the Shared File System should ever indicate that it
cannot commit changes, the reusable server kernel backs out the changes, using SFS's rollback support.

Because of the cumulative nature of the SFS file that holds an enrollment set, it is occasionally helpful to
remove redundant information from such a file. An EXEC to perform such cleanup is provided. When an
enrollment set is being cleaned, it cannot be in use for any other purpose; it must be unloaded prior to
being cleaned and reloaded afterward.

Each enrollment record consists of a 64-byte key and a corresponding piece of enrollment data. The
reusable server kernel imposes no structure on the enrollment data itself; the structure of the enrollment
data is left to the server author. However, the server kernel does impose the restriction that an enrollment
record cannot contain more than 65,450 bytes of data (this limit comes from the record-length limit of
CMS file systems). Zero-length data is permitted on enrollment records.

© Copyright IBM Corp. 1999, 2020 43

Last, recognizing the utility of a general-purpose indexed access method capable of holding data on this
scale, thereusable server kernel implements transient enrollment sets. A transient enrollment set is
empty when opened, is never written to disk, and all memory of it is lost when it is closed. While it is
open, though, all of the server kernel's indexing and retrieval facilities are available, and VM Data Spaces
are exploited just as they are for permanent enrollment sets. This gives the server author a way to keep
track of large numbers of tagged, transient data items concurrently. Said data items can be stored in an
enrollment set, where the reusable server kernel keeps them in a VM Data Space until they are again
requested by the server program. Note also that because transient enrollment data is never written to a
CMS file, it is not necessary for the reusable server kernel to limit the data length quite so much. For
transient enrollment sets, the amount of data that can be stored in a given record is limited to 16 MB - the
maximum amount movable through the Move Long (MVCL) instruction.

Programming Interfaces
The server program can use the following programming interfaces to manipulate enrollment sets:

Table 25. Enrollment APIs

Programming Interface Description Page

ssEnrollCommit Commit changes to an
enrollment set.

“ssEnrollCommit — Commit
Enrollment Set” on page 264

ssEnrollDrop Close a permanent enrollment
set, either committing or rolling
back the uncommitted changes,
or destroy a transient
enrollment set.

“ssEnrollDrop — Drop Enrollment
Set” on page 266

ssEnrollList Generate a list of the enrollment
sets currently loaded.

“ssEnrollList — List Enrollment
Sets” on page 268

ssEnrollLoad Load an enrollment set from an
SFS file into a VM Data Space, or
initialize a transient enrollment
set.

“ssEnrollLoad — Load Enrollment
Set” on page 270

ssEnrollRecordGet Retrieve a record from an
enrollment set.

“ssEnrollRecordGet — Get
Enrollment Record” on page 272

ssEnrollRecordInsert Insert a record into an
enrollment set.

“ssEnrollRecordInsert — Insert
Enrollment Record” on page 274

ssEnrollRecordList Generate a list of the indicies of
all the records in the enrollment
set.

“ssEnrollRecordList — List
Records In Enrollment Set” on
page 276

ssEnrollRecordRemove Remove a record from an
enrollment set.

“ssEnrollRecordRemove —
Remove Enrollment Record” on
page 278

Operator Commands
The ENROLL service implements a set of operator commands:

44 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 26. Enrollment Commands

Command Description Page

COMMIT Commits changes to an enrollment
set.

“ENROLL COMMIT” on page 152

DROP Unloads an enrollment set from a
data space.

“ENROLL DROP” on page 153

GET Retrieves a record from an
enrollment set.

“ENROLL GET” on page 154

INSERT Inserts a record into an enrollment
set.

“ENROLL INSERT” on page 155

LIST Generates a summary of the loaded
enrollment sets.

“ENROLL LIST” on page 156

LOAD Loads an enrollment set into a data
space.

“ENROLL LOAD” on page 157

RECLIST Generates a list of the keys of the
records in an enrollment set.

“ENROLL RECLIST” on page 158

REMOVE Removes a record from an
enrollment set.

“ENROLL REMOVE” on page 159

Chapter 6. Enrollment 45

46 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 7. Indexing by Prefixes

Overview
The reusable server kernel's enrollment API provides a simple indexed access method that lets the server
author use a fully-formed index to return exactly one record whose key matches the supplied fully-
formed index. This solves the enrollment problem well but ignores a large class of indexing problems
relevant in server development. In particular, it ignores the problem of returning a set of records whose
keys are matched by a prefix the caller supplies. This problem appears in many situations, such as
telephone directory lookup or web page indexing.

The reusable server kernel contains APIs that let the server application build and interrogate indices that
permit the retrieval of record sets according to lookup by prefix. For each such index, the reusable server
kernel APIs provide insertion and lookup operations, identifying the inserted or retrieved records by
record number (the indexing API holds onto record numbers, not records themselves). The reusable
server kernel keeps each such index in its own VM Data Space and lets multiple RSK-based service
machines access the indices concurrently. An index does not persist across invocations of the server
program; the server must rebuild the index each time it starts.

More specifically, the provided APIs are:21

• ssTrieCreate: creates an index. The caller specifies a name for the index and the size (in pages) for
the index. The reusable server kernel creates a data space to hold the index and returns the ASIT and
ALET to the caller.

• ssTrieDelete: destroys an index. The reusable server kernel destroys the corresponding data space.
• ssTrieRecordInsert: the caller supplies the index name, a record number, and the key to be

associated with the record number. Thereusable server kernel inserts the record number into the index.
• ssTrieRecordList: the caller supplies an index name and a key prefix. The reusable server kernel

searches the index and returns a list of all the record numbers whose corresponding keys match the
prefix specified by the caller.

Example
Suppose a company phone book is contained in a CMS F-format file, with the 40-column employee name
appearing in columns 36 to 75. An RSK-based phone directory lookup engine might read the phone file
into memory and then form an index on the employee names. To index each record, the engine would call
ssTrieRecordInsert, identifying the record by number and supplying the 40-column employee name
field as the record's key. Once all records have been indexed, the server is ready to begin servicing lookup
requests; given a prefix, the engine can call ssTrieRecordList, thereby retrieving the record numbers
of all the records whose key matches the prefix of interest.

Index Sharing
An application using the trie APIs will probably work alone most of the time, that is, its indices will be
private. In this manner of operation, the application creates the index by name and then refers to it by
name when performing insertion and lookup operations.

21 The APIs take their name from the data structure used to implement the index. This data structure is called
a trie (rhymes with sky) and is described, for example, in Aho, Hopcroft, and Ullman, Data Structures and
Algorithms, Addison-Wesley, 1985, ISBN 0-201-00023-7.

© Copyright IBM Corp. 1999, 2020 47

However, the reusable server kernel does provide the basic structure necessary for the application to
share an index among multiple virtual machines (for example, worker machines). When ssTrieCreate
creates an index, it supplies the caller with the ASIT and ALET of the data space containing the index. If
the application desires to share the index with (for example) a worker machine, it should call CSL routine
DMSSPCP to permit the worker to access the index data space read/write and then it should send the ASIT
to the worker. The worker should use DMSSPLA to generate its own ALET for the space and then call the
trie APIs as appropriate, identifying the index by ALET. Note that the worker must have read/write access
to the data space, even if it is performing only lookups. This is because the trie APIs use storage in the
data space to implement necessary locking primitives.

The reusable server kernel makes no attempt to recover from program checks that will occur in worker
machines if the owning virtual machine should delete the index. When deletion of an index (that is, a call
to ssTrieDelete) is required, the application must take care to inform the workers and receive their
acknowledgements prior to deleting the index.

No Record Deletion?
For reasons of complexity, there is no ssTrieRecordDelete function. If it becomes necessary to
"delete a record", the application should simply ignore that record's number when it appears in the output
of ssTrieRecordList.

Commands
A very simple built-in service, TRIE, offers a command, LIST, that can be used to display pertinent
information about the indices the server has created. For each such index, thereusable server kernel
displays the index name and ASIT, the index size, the amount of data space storage actually being used,
the number of records being held, and the number of nodes in the trie.

There are no command equivalents for the ssTrieRecordInsert and ssTrieRecordList entry
points.

48 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 8. Anchors

The reusable server kernel lets the application set and query the value of an application-wide anchor
word. This is similar in intent to CMS's ANCHOR macro and its ThreadSetUserData and
ThreadQueryUserData CSL routines. Unlike ANCHOR, the reusable server kernel facility is callable.
Unlike the thread functions, the reusable server kernel facility provides application-wide scope.

A server program would typically use the anchor services for holding the address of some server-wide
control block. This control block would typically be acquired early in the server's life and the
ssAnchorSet function would be called to record the address of this control block. When the address of
the control block is required, the server can call ssAnchorGet to retrieve the control block's address.

Note also that ssAnchorGet returns the address and length of the buffer in which the server may place
data to be accrued by the CP monitor (APPLDATA -- DIAG X'00DC').

The reusable server kernel does not use CSL routines ThreadSetUserData or ThreadQueryUserData.
The server writer is free to use these routines as he wishes.

The ANCHOR macro works correctly only in virtual uniprocessor situations. It is not recommended for use
in virtual multiprocessor situations.

© Copyright IBM Corp. 1999, 2020 49

50 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 9. Memory Management

Fast, efficient allocation and release of primary storage (memory) is vital to the execution of a server
program. CMS provides the CMSSTOR facility for storage management; CMSSTOR works very well for
single-threaded, assembler-only, base-VCPU-only programs, but for multithreaded, parallel servers
CMSSTOR shows its limits. In particular, the following characteristics of CMSSTOR are undesirable for
server writers:

• Base-only execution: though the macro can be invoked from non-base processors, CMSSTOR actually
runs on the base VCPU. This means that the base VCPU becomes a serialization point for the server.

• Assembler only: callable support is not provided.
• Base address space only: CMSSTOR is not capable of managing storage in a data space.

To overcome these difficulties, the reusable server kernel implements a “front end” for CMSSTOR whose
purpose is to relieve these constraints. The following entry points are provided:

• ssMemoryCreateDS: creates a data space and prepares to manage the storage thereof. The caller
sees the data space as a subpool.

• ssMemoryAllocate: allocates storage, either from a data space or the primary address space.
• ssMemoryRelease: releases storage.
• ssMemoryDelete: deletes a subpool and the corresponding data space.

For management of data space storage, the reusable server kernel storage management facility provides
an interface that lets the caller see a data space as a subpool, as follows:

• To create a data space and assign a subpool name to it, the caller invokes ssMemoryCreateDS,
passing it the subpool name to use and the size of the data space. Subject to any constraints imposed
by the virtual machine's XCONFIG ADDRSPACE directory entry, the reusable server kernel creates the
data space, prepares to manage the storage therein, and returns to the caller the new data space's ASIT
and ALET.

ssMemoryCreateDS accepts a storage key and option array on input and passes these directly to CSL
routine DMSSPCC (Create Data Space). If the caller of ssMemoryCreateDS supplies a zero-length
option array, ssMemoryCreateDS uses all of DMSSPCC's defaults, except that the data space is created
SHARE.

Regarding establishing addressability to the data space, ssMemoryCreateDS calls DMSSPLA with the
WRITE and SYNCH options.

• To allocate and release storage in the data space, the caller uses ssMemoryAllocate and
ssMemoryRelease, referring to the data space by its subpool name.

• To delete the data space, the caller uses ssMemoryDelete.

For the primary address space, the reusable server kernel storage management facility is a front-end for
CMSSTOR, as follows:

• For each subpool name ever used in a call to (that is, “seen by”) ssMemoryAllocate, the reusable
server kernel keeps track of storage allocated through ssMemoryAllocate and storage released
through ssMemoryRelease. In other words, for each subpool, the reusable server kernel maintains a
free storage subpool cache that can be manipulated without serializing on the base VCPU.22

• When ssMemoryAllocate is called, it performs the following steps in an attempt to locate storage for
the caller:

22 In fact, non-trivial serialization occurs only when two VCPUs try to manipulate the same subpool.

© Copyright IBM Corp. 1999, 2020 51

Step Description

1 The subpool's cache is checked, and if max_bytes_needed can be satisfied from there
then the request completes.

2 CMSSTOR OBTAIN is consulted in variable fashion, the lower bound being the largest
qualifying size available in the cache (or min_bytes_needed, if all cache pieces are too
small) and the upper bound being max_bytes_needed.

3 The request is satisfied from either the result of CMSSTOR OBTAIN or whatever was
available in the cache, whichever is larger.

• When ssMemoryRelease is called, the released storage is added to the appropriate subpool cache,
and if the free storage in the cache is above the maximum free amount specified by the MEM&_MAXFREE
configuration parameter, the cache is trimmed.

• When ssMemoryDelete is called, the cache for the named subpool is destroyed, all storage being
released through SUBPOOL DELETE.

The application should not call SUBPOOL DELETE for subpools that have been manipulated through calls
to ssMemoryAllocate and ssMemoryRelease; such an invocation will confuse the reusable server
kernel. Use ssMemoryDelete instead.

After the application ends, the reusable server kernel issues ssMemoryDelete for each subpool cache
remaining.

For more information on the forms of the subpool names used internally by the reusable server kernel,
see Appendix F, “Reserved Names,” on page 375.

52 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 10. Worker Machines

In some server situations, a single virtual machine performing complex operations for lots of clients
simultaneously is an inconvenient, risky, or unachievable proposition. For example, if the clients are
submitting code for the server to run as the clients' proxy, it would be desirable for each such client
submission to run in an environment where it cannot tamper with, harm, or even innocently interfere with
the execution of other clients' similar submissions. Similarly, if the server must run code that is under test
or is at risk for terminating abnormally, the server designer should have at his disposal a means for
running such code in isolation. In some cases, performance of the server might even improve if client
work could be distributed among a set of worker virtual machines, each such worker performing a
dedicated function for multiple clients simultaneously or perhaps working alone on behalf of a single
client. These are no doubt only a few of the possible scenarios where the ability to run some of the
server's work in other virtual machines would be an attractive feature.

The reusable server kernel recognizes these situations and offers an API that lets the server author
distribute work among sets of subordinate virtual machines. These subordinates, called workers, usually
run on the same CP instance as the main server. Sets of subordinates are defined to the main server via
operator commands, probably in PROFILE RSK. The server kernel establishes communication
connections to workers in response to API calls made by service instances; however, the format and
meaning of the data actually exchanged with workers is left to the server author. In addition, when the
workers are running on the same CP instance as the main server, the server kernel uses the XAUTOLOG
and FORCE commands to log on and log off workers as appropriate. Finally, it should be emphasized that
the relationship with the worker machine is mediated entirely by the service instance. The server kernel
never shunts data directly from a client to a worker or vice-versa.

Functional Overview
For organizational purposes, the server kernel organizes worker machines into groups called classes. The
virtual machines making up a class are all functionally equivalent to one another as far as the server
author is concerned. In other words, when a service instance needs help from a worker, any member of
the class will do; the server author leaves it up to the server kernel to select a class member and establish
a connection to it. The server kernel is able to manage multiple worker classes simultaneously.

To initiate a connection to a worker, a service instance calls entry point ssWorkerAllocate, specifying
the class from which the server kernel is to select a worker machine and specifying some details about
how the connection is to be allocated. In response to this call, the reusable server kernel evaluates the
load on each worker in the class, selects the least-loaded member, and attempts to establish an IUCV
connection to it. The service instance can influence the selection algorithm slightly; it can specify either
that the server kernel should XAUTOLOG another worker only if all currently logged-on workers are full, or
it can specify that the server kernel should route the new connection to an empty or newly-autologged
worker if possible, resorting to multiple connections to a single worker only if the class is sufficiently
active. When ssWorkerAllocate returns to its caller, either the connection to the worker is in place or
all reasonable attempts to contact a worker have been exhausted.

Each member of a worker class -- in other words, each worker virtual machine -- has associated with it a
maximum number of IUCV connections it can handle simultaneously. The server author or server operator
specifies this limit via operator command when he adds the worker to the class. For the purpose of
worker machine selection, the load being imposed on a given worker is taken to be the fraction of its IUCV
capacity in use. For example, a worker capable of handling four IUCV connections but handling only two
at the moment is considered by the server kernel to be 50% utilized, while if that worker were handling
only one IUCV connection at the moment, it would be considered to be 25% utilized. The load distribution
algorithm selects the least-loaded machine, using round-robin to break ties.

If the caller requests it, the reusable server kernel can set alternate user ID and security label (seclabel)
information for the worker as part of selecting the worker. To be able to set a worker's alternate user ID
and seclabel, the controlling virtual machine must have permission to issue Diagnose X'D4'. See z/VM: CP

© Copyright IBM Corp. 1999, 2020 53

Programming Services for more information. If you attempt to use the reusable server kernel's alternate
user ID machinery and your virtual machine does not have the privilege necessary to issue Diagnose
X'D4', your virtual machine will take a program check. It is your responsibility to recover from this. Also
note that the reusable server kernel always uses the subcode X'04' form of Diagnose X'D4'.

Once the connection to the worker is established, the service instance communicates with the worker
using the ssClient APIs and CMS IPC, just as it would communicate with a client. More specifically,
ssWorkerAllocate returns a C-block that represents the connection between the service instance and
the worker. To write to the worker, the service instance uses ssClientDataPut followed by a CMS IPC
message telling the server kernel that it has generated new data to be sent to the worker. Reading from
the worker is similar; after it sees a CMS IPC message informing it that new data are available, the service
instance calls ssClientDataGet to retrieve what the worker sent.

When a service instance is done using a worker, it notifies the reusable server kernel via CMS IPC, just as
it would do to notify a server kernel line driver that it had finished with a client. The IPC message causes
the server kernel to sever the IUCV connection to the worker. In the event that the worker terminates the
connection first, the service instance is notified and must acknowledge the connection loss, just as it
must respond to a line driver when it learns of the loss of communication to a client.

Server Configuration Considerations
The worker API uses IUCV to move data between the main server and the workers, and when the workers
are running on the same CP instance as the main server, the worker API employs the CP XAUTOLOG and
FORCE commands to start and stop worker machines. The following configuration considerations apply:

• The main server must be permitted to IUCV CONNECT to each worker machine. There are many ways to
arrange this. Perhaps the simplest way is to insert IUCV ALLOW into the CP directory entry for each
worker machine. Any method that lets the connection proceed is just fine.

• If the workers are running on the same CP instance as the main server, the main server virtual machine
must be permitted to XAUTOLOG and FORCE worker machines. XAUTOLOG requires class A or B or an
entry in the CP directory entry of each worker machine. FORCE requires CP class A.

Distributing Worker Machines
Some installations might choose to employ a single system image (SSI) cluster or the VM/Pass-Through
Facility (PVM) to distribute IUCV and thereby run worker machines on systems other than the local CP. For
example, specialized hardware might be available on some other processor, and a worker machine might
be placed there to handle requests originating from other systems.

On a per-class basis, the server operator decides whether the server kernel is to manage workers as local
or distributed. If the class is specified to be local, the server kernel employs XAUTOLOG and FORCE to log
workers on and off as necessary. If the class is specified as distributed, the server kernel skips all such
management steps, merely attempting IUCV CONNECT and returning an error if the connection attempt
fails.

When a class is specified as distributed, the server operator or server designer is responsible for making
sure that the worker machines are autologged at an appropriate time and that they are reset if errors or
abends occur. A system management tool such as IBM Operations Manager for z/VM can be used for this
purpose.

When the server kernel issues IUCV CONNECT to connect to a worker machine, it does so in a manner
that can be distributed to other systems if CP is appropriately configured. To make this work in a non-SSI
environment, the system administrator must specify DISTRIBUTE IUCV YES in the CP system
configuration file (SYSTEM CONFIG). He must also make sure that the IUCV carrier (for example, PVM) is
working properly. Within an SSI cluster, IUCV is automatically available among the member systems,
regardless of the DISTRIBUTE IUCV configuration. However, to connect to a worker machine on a
system that is part of the same ISFC collection but is not a member of the same SSI cluster, DISTRIBUTE
IUCV YES must be specified.

54 z/VM: Reusable Server Kernel Prog. Guide & Ref.

API Details
To allocate a connection to a worker machine, the service instance calls ssWorkerAllocate, passing it
a few pieces of information:

• The address of its own C-block
• The worker class in which the connection should be allocated
• An indication of how the server kernel is to select a worker:

– The instance can ask that the server kernel attempt to minimize the number of worker machines
logged on, routing connections to logged-on, not-completely-full workers whenever possible, or

– The instance can ask that the server kernel route connections to empty or not-yet-logged-on workers
whenever possible, choosing partially-busy, already-logged-on workers only when necessary.

• An integer specifying the number of workers the server kernel should try before giving up and returning
failure to the caller.

• Optional alternate user ID and seclabel information.

Subject to these parameters, the server kernel selects a worker machine and tries to establish a
connection to it. If the attempt fails, the server kernel will retry a small number of times, and if the worker
proves unreachable, the server kernel will record this fact (so it can skip the worker when it handles
subsequent ssWorkerAllocate calls) and move to another worker. The server kernel will iterate in this
way until either the caller's specified number of tries expires or the whole worker class proves
unreachable. Normally the retry strategy is not a factor - the usual case will be that the worker will be
waiting for work and will accept the server kernel's IUCV CONNECT request immediately.

When ssWorkerAllocate returns to the calling instance, it supplies two pieces of information that are
crucial to the instance's being able to interact with the assigned worker:

• It supplies a three-byte unsigned binary integer that uniquely identifies the connection to the worker.
This integer is called the connection ID. This integer is returned in an unsigned four-byte buffer, the
uppermost byte of said buffer always being zero.

• It supplies the address of a C-block that represents the connection to the worker. This is called the
worker C-block.

To detect activity on the worker connection, the instance issues QueueReceiveBlock against its line
driver queue, just as it normally does. Recall that under normal circumstances, this API call completes
when the instance's line driver sends a message to the instance, informing the instance that something
significant has happened with respect to its client. When using the worker API, though, the instance
needs to be aware that messages indicative of worker activity will also arrive on its line driver queue. The
instance can detect that a received IPC message is indicative of worker activity by examining the message
type field of the received IPC message. A message indicative of worker activity contains X'01' as the high-
order byte of the message type; the lower three bytes of the type field are the 24-bit connection ID
returned by ssWorkerAllocate. Thus the instance can wait for either client activity or worker activity
with a single call to QueueReceiveBlock, and the arriving message will tell the instance whether it's the
client or a worker that needs attention.

To exchange data with the worker, the instance calls the ssClient APIs just as usual, using the
ss_cli_iam_instance qualifier. Data are moved between the instance and the worker in the same manner
as they are moved between instance and client. When the instance must send an IPC message to the
"worker line driver" -- for example, to inform the server kernel that it has used ssClientDataPut to
queue data for transmission to the worker -- it forms the instance-to-line-driver message just as it would
for any line driver interaction and then transmits the IPC message to the queue handle appearing in the
worker C-block. The server kernel receives the message and operates on the worker connection
accordingly.

Chapter 10. Worker Machines 55

The Worker C-Block
The worker C-block contains a few fields that will be of special interest to the service instance. These
fields are:

• A queue handle that represents the queue to which the instance should transmit CMS IPC messages
relevant to the connection to the worker.

• A line driver key that should be used as the key in any such transmitted messages.
• The vc_userid field of the worker C-block contains the user ID of the worker virtual machine.

Further, certain fields in the worker C-block are zero because they are irrelevant in the context of a
connection to a worker machine. For example, a worker C-block does not contain a pointer to an S-block.

Operator Commands
The reusable server kernel supplies a service, WORKER, which lets the server operator manipulate worker
classes. The commands are given in the following table.

Table 27. WORKER Commands

Command Description Page

WORKER ADD Lets the operator add a worker machine to a worker
class, specifying the number of IUCV connections
the worker machine is capable of handling
simultaneously. This command would usually be
found in PROFILE RSK, though the operator is free
to issue it while the server is running.

“WORKER ADD” on
page 203

WORKER CLASSES Displays the existing worker machine classes and
some brief status information about each class.

“WORKER CLASSES”
on page 204

WORKER DELCLASS Deletes an entire worker class. Normally this just
means that any instances connected to workers in
the class would receive an IPC message asking
them to stop their activity. The FORCE option will
cause the server kernel to sever the IUCV
connections, to inform the instances that
communication to the workers has been lost, and to
CP FORCE any workers running disconnected. When
DELCLASS processing completes, the worker class
is no longer available for use.

“WORKER DELCLASS”
on page 205

WORKER DELETE Operates on a single worker machine in a manner
similar to DELCLASS.

“WORKER DELETE” on
page 206

WORKER DISTRIBUTE Informs the server kernel that a worker class should
be managed as if its worker machines are
distributed across systems.

“WORKER
DISTRIBUTE” on page
207

WORKER MACHINES Displays a table of status information about the
machines in a given class.

“WORKER
MACHINES” on page
208

56 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 27. WORKER Commands (continued)

Command Description Page

WORKER RESET Clears any persistent error information the server
kernel may have remembered about worker
machines. This restores the workers to usable
status and is useful after manual intervention has
resolved a problem with a given worker machine or
class of worker machines.

“WORKER RESET” on
page 210

WORKER STATUS Displays a table of status information about each
worker connection existing at the moment.

“WORKER STATUS”
on page 211

Writing a Worker Machine Program
IBM does not supply a program to run in the worker machine. The server author must write this program,
being aware of the following configuration and execution considerations:

• The worker machine's CP directory entry and profiles must be configured so that the worker machine
will start itself completely if autologged. If the worker machine is running a CMS-based program, IPL
CMS PARM AUTOCR is appropriate in the worker's CP directory entry and the worker's PROFILE EXEC
should be rigged so that the worker program starts automatically. If the worker program is running
under some other operating system, the other operating system's corresponding mechanisms should
be employed.

• The server kernel will attempt to IUCV CONNECT to the worker machine, using RSKWORK as the first
eight bytes of the user data area of its connection parameter list. If the worker program is CMS-based,
this means that the worker program will need to issue HNDIUCV SET to identify an exit named
RSKWORK. When the server kernel attempts to connect, the worker program's RSKWORK exit routine will
be driven. The worker program should respond with CMSIUCV ACCEPT.

• The format and meaning of the data exchanged on the IUCV connection is up to the server author.
• Eventually it will be time to bring down the IUCV connection. The server kernel will IUCV SEVER if the

service instance instructs it that the relationship between the instance and the worker is to be ended; in
this case the worker program should respond with IUCV SEVER. If the worker machine is the one that
decides when the connection is over, it should issue IUCV SEVER and the server kernel will respond
with its own IUCV SEVER, reflecting the connection loss to the service instance.

• If the main server is configured such that it might route multiple IUCV connections to a worker
simultaneously, the worker program should be prepared to handle multiple IUCV connections
simultaneously.

• The worker program should not use IUCV SEND,TYPE=2WAY, IUCV QUIESCE, or IUCV RESUME. The
server kernel is not prepared to handle these and will respond with IUCV SEVER.

Finally, it is interesting to note that the reusable server kernel itself could be used as the base for a
program to be run in the worker machine. The server kernel's IUCV line driver is capable of being the
recipient of IUCV activity generated by the server kernel's worker API.

Chapter 10. Worker Machines 57

58 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 11. Run-Time Environment

To facilitate the writing of well-performing programs and to provide high-performance interprocedure
linkage, the reusable server kernel implements its own procedure linkage convention. The reusable server
kernel entry points themselves (for example, ssSgpStart) all expect to be driven using this convention,
and routines provided by the server writer (for example, RSKMAIN, service entry points, thread entry
points, and so on) are all driven by the reusable server kernel using this convention. This convention
greatly reduces the need to call a storage management interface to allocate and release save areas and
local variable storage. This keeps overhead down, letting procedure linkage happen without excessive
SVCs or other calls. 23

Associated with each thread is a chain of control blocks known as dynamic storage area frames or stack
frames. Each stack frame is at least 4 KB in size. Contained in each frame is a frame header and one or
more dynamic storage areas (DSAs). The anchor for this chain of DSA frames is held in a control block
called the run-time anchor block (RAB). An example is shown in Figure 4 on page 60.

23 The linkage resembles the linkage used among internal entry points in the CMS Application Multitasking
kernel.

© Copyright IBM Corp. 1999, 2020 59

Figure 4. Run-Time Environment Control Blocks

The register contents at procedure entry are described in Table 28 on page 60.

Table 28. Register Contents at Procedure Entry

Register Description

R1 Pointer to an OS Type I parameter list. The entries in this list are addresses of the
actual parameter values.

R12 Pointer to the RAB, organized as shown above.

R13 Pointer to a DSA, organized as shown above.

R14 Return address.

R15 Called procedure's entry address.

When a procedure is entered, it uses the save area pointed to by R13 in the usual OS fashion (STM
R14,R12,12(R13)). It then computes the size of the DSA it needs (120 bytes plus amount of automatic
storage needed) and compares that to the amount left in the frame; this comparison is done by adding the
amount needed to the next available byte (NAB) in the caller's save area and comparing that to the frame

60 z/VM: Reusable Server Kernel Prog. Guide & Ref.

end field in the RAB. If there is enough space in the frame, the new DSA is built starting at the byte
pointed to by the NAB field in the current DSA, and this new DSA is chained to the caller's DSA in the usual
OS fashion. If not enough space is left, then the frame overflow handler is called to add a new frame to
the end of the frame list (the frame overflow handler's address is in the RAB). The frame overflow handler
is cognizant of the registers used during procedure entry and returns with the registers set such that the
linkage processing can continue as if no overflow had occurred.

When a procedure exits, it unchains its save area, restores the caller's registers (including the caller's
R13, which comes from the previous DSA pointer field in the exiting procedure's DSA), and returns to the
caller through BR R14.

The reusable server kernel provides PL/X and assembler macros implementing these entry and exit
conventions. For PL/X, the macros are invoked through the OPTIONS clause on the PROCEDURE
statement. For assembler, the macros are invoked directly by the assembler programmer. The assembler
programmer must ensure that the amount of DSA storage he requests is an integral number of
doublewords. An example is shown in Figure 5 on page 61 and Figure 6 on page 62.

 @PROCESS ENVIRONMENT(VM/ESAOS) OPT(MAX);

 /* illustration of linkage convention */

 sstest: procedure
 (
 pl_epptr, /* A(eplist) */
 pl_tpptr, /* A(tplist) */
 pl_scptr /* A(scblock) */
)
 options
 (
 id /* generates identifier */
 reentrant /* no static data, please */
 amode(31) /* AMODE 31 */
 rmode(any) /* can live anywhere */
 datareg(13) /* R13 locates automatic storage */
 savearea(120) /* size of fixed part of DSA */
 stack('SSPRLG','SSEPIL') /* entry and exit macros */
);

 /* note BYVALUE because the pointer values we want are */
 /* in the array pointed to by R1 */
 declare sstest entry
 (
 pointer(31) byvalue,
 pointer(31) byvalue,
 pointer(31) byvalue
)
 external as ('RSKMAIN');

 declare
 pl_epptr pointer(31), /* pointer to eplist */
 pl_tpptr pointer(31), /* pointer to tplist */
 pl_scptr pointer(31); /* pointer to SCBLOCK */

 respecify (r12) restricted; /* stay away from RAB pointer */

 /* body of procedure goes here */

 end sstest;

Figure 5. PL/X Linkage

Chapter 11. Run-Time Environment 61

*
* Illustration of linkage convention
*

*
* Procedure entry:
*RSKMAIN
 CSECT , Declare CSECTRSKMAIN
 AMODE 31 Establish AMODERSKMAIN
 RMODE ANY Establish RMODE
 STM R14,R12,12(R13) Save registers
 LR R11,R15 R11 is base register
 USING RSKMAIN,R11 Establish addressability
 LA R0,DSASIZE R0 = size of DSA needed
 SSPRLG R1,R2 -> new DSA, R0 = new NAB
 LR R15,R13 R15 -> caller DSA
 LR R13,R2 R13 -> my DSA
 ST R15,4(,R13) Write my backward pointer
 ST R13,8(,R15) Write caller's forward pointer
 LM R15,R2,16(R15) Restore R15-R2
*
* Your code goes in here… stay away from R11-R13. R14
* and R15 can be used as needed for calls to other routines.
*
* Note that your automatic storage area (the storage you
* requested via R0 when you called SSPRLG) starts at offset
* X'78' into the save area returned by SSPRLG.
*
*
* Procedure exit (note RC is in R15):
*
 L R13,4(,R13) R13 -> caller's DSA
 LA R0,DSASIZE Size of DSA I used
 SSEPIL Release it
 L R14,12(,R13) Get return address
 LM R0,R12,20(R13) Restore rest of registers
 BR R14 Return to caller
*
* Other stuff
* Note DSASIZE is a multiple of 8 bytes!
DSASIZE EQU 200 200-120 = 80 bytes of local vars
 REGEQU Register equates
*
 END

Figure 6. Assembler Linkage

Like all other routines, the server entry point RSKMAIN is driven using this linkage convention. The
parameter list array passed to RSKMAIN through R1 is organized as described in Table 29 on page 62.

Table 29. Parameter List Array for RSKMAIN

Offset Usage

0 Pointer to the extended parameter list with which CMS invoked the module.

4 Pointer to the tokenized parameter list with which CMS invoked the module.

8 Pointer to the SCBLOCK for the module, if the module is a nucleus extension.

The reusable server kernel uses CMS Application Multitasking's support for custom language run-time
environments to implement its convention for procedure linkage. BKWRTE MODULE is the language
environment manager for the reusable server kernel and needs to be present in the file mode search
order when the server module starts. CMS loads BKWRTE as a nucleus extension prior to giving control to
the server module. BKWRTE must remain loaded as a nucleus extension for the life of the server program.

62 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 12. Initialization and Profiles

This chapter describes the flow of control during server execution and describes how to set up PROFILE
RSK. For descriptions of the various command sets, see Chapter 14, “Command Descriptions,” on page
77.

To accomplish most of the work of initializing and configuring the server, the server author writes a Rexx
exec, PROFILE RSK. In this exec the server author supplies commands necessary to configure the
server, start it, and wait for its completion. The reusable server kernel runs PROFILE RSK as part of
server startup.

Most of the work done in PROFILE RSK is accomplished through ADDRESS RSK and command sets
implemented by the reusable server kernel. These command sets fall into a few broad categories:

• CONFIG commands, meant to set certain configuration parameters needed by the reusable server
kernel during execution.

• SGP commands, meant to manipulate storage groups.
• AUTH commands, meant to provide a means for manipulating the authorization database.
• CACHE commands, meant to provide a means for configuring file caches.
• ENROLL commands, meant to manipulate enrollment data.
• WORKER commands, meant to define pools of worker machines.
• Line driver commands, meant to manipulate line drivers and the relationships between line drivers and

services.

Flow of Control
The general flow of control during the execution of the server is illustrated in Figure 7 on page 64. The
execution of the server has these general stages:

Step Description

1 The module begins, and the reusable server kernel performs some rudimentary
initialization.

2 The reusable server kernel passes control to RSKMAIN, the server entry point provided by
the server author.

3 RSKMAIN performs whatever setup is needed, including binding its services through calls
to ssServiceBind.

4 RSKMAIN calls ssServerRun to begin the server.

© Copyright IBM Corp. 1999, 2020 63

Step Description

5 ssServerRun passes control to PROFILE RSK. The processing in PROFILE RSK
proceeds in several stages, as follows:

1. The profile may perform appropriate initialization.
2. The profile issues several CONFIG commands to set configuration parameters for the

reusable server kernel.
3. The profile issues the RUNSERV command to begin the execution of the server. In

response to RUNSERV, the reusable server kernel brings up line drivers and makes APIs
available for use. When RUNSERV returns, the reusable server kernel is ready for
operation.

4. The profile issues any AUTH, CACHE, or other commands necessary to configure the
server.

5. The profile issues one or more line driver START commands to start services. At this
point the server is running.

6. The profile issues the WAITSERV command to wait for the server to end.
7. The profile may perform appropriate termination activities.
8. The profile returns to its caller.

6 ssServerRun returns to RSKMAIN. The return and reason code from ssServerRun
indicate whether the server was able to be started.

7 RSKMAIN performs termination processing.

8 RSKMAIN returns to the reusable server kernel, supplying a return code.

9 The reusable server kernel performs termination and returns to CMS. The return code
supplied to CMS by the server module is the return code of RSKMAIN.

Figure 7. Flow of Control

64 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Execution Conditions within RSKMAIN
RSKMAIN has only two reusable server kernel APIs at its disposal:

• ssServiceBind, to bind services.
• ssServerRun, to start the server and wait for its completion.

No other APIs are permitted. Attempts to call them will produce unpredictable results.

PROFILE RSK
Shortly after the server module begins execution, PROFILE RSK gets control. This is just a Rexx exec that
performs initialization, configures the server, starts it, waits for it to end, and then performs termination
functions.

For the server author's convenience, any parameters present on the command line used to invoke the
server module are passed to PROFILE RSK such that they can be retrieved with parse arg.

In general, anything one can do from Rexx is permitted in PROFILE RSK. However, here are some things
to keep in mind:

• Some CONFIG commands are usable only before RUNSERV while others are usable anytime. For more
information, see Table 31 on page 66.

• All of the rest of the commands sets (for example, AUTH) are usable only between RUNSERV and
WAITSERV, that is, only while the server is running. Attempts to use these commands at other times
produce RC=-3.

For a sample of PROFILE RSK, see Appendix A, “Sample PROFILE RSK,” on page 361.

Starting and Stopping
Table 30 on page 65 illustrates the syntax for the RUNSERV and WAITSERV commands. Issue these from
Rexx using ADDRESS RSK.

Table 30. RUNSERV and WAITSERV Commands

Command Usage Syntax Notes

RUNSERV Used within PROFILE
RSK to start the server.

RUNSERV Return codes:
0

Server started OK
x

Some other situation

WAITSERV Used within PROFILE
RSK to wait for the
server to stop.

WAITSERV Return codes:
0

Server terminated
normally

x
Some other situation

Configuration Parameters
The reusable server kernel defines certain configuration parameters so that the server author or system
programmer can control the manner in which the server behaves. These configuration parameters are

Chapter 12. Initialization and Profiles 65

manipulated by a command, CONFIG, which is useful in PROFILE RSK. CONFIG is issued through
ADDRESS RSK. Most CONFIG commands are useful only prior to issuing RUNSERV, but some are useful
anytime.

The parameters and their meanings are given in Table 31 on page 66. For definitions of the commands
used to manipulate these parameters, see Chapter 14, “Command Descriptions,” on page 77.

In truth, CONFIG is a service meant for the manipulation of configuration variables. This means that a
command such as MSG START CONFIG could be used to permit remote manipulation of configuration
variables.

Table 31. Configuration Variables

Variable Function When? Notes

AUT_CACHE Sets the number of rows of
authorization data to cache.

Anytime. Specify rows as a
positive integer.

AUT_DATA_1 Sets the name of copy 1 of the
authorization data file.

Pre-
RUNSERV

AUT_DATA_2 Sets the name of copy 2 of the
authorization data file.

Pre-
RUNSERV

Ignored when
AUT_LOCATION is
SFS.

AUT_FREE Sets the maximum number of row
buffers to keep on the free row
buffer list.

Anytime. Specify rows as a
positive integer.

AUT_INDEX_1 Sets the name of copy 1 of the
authorization index file.

Pre-
RUNSERV

AUT_INDEX_2 Sets the name of copy 2 of the
authorization index file.

Pre-
RUNSERV

Ignored when
AUT_LOCATION is
SFS.

AUT_LOCATION Sets the repository for the
authorization data.

Pre-
RUNSERV

AUT_LOG Sets the name of the authorization
logfile.

Pre-
RUNSERV

Ignored when
AUT_LOCATION is
SFS.

AUTHCHECK_AUTH Sets whether the AUTH service will
perform authorization checking for
its commands.

Anytime.

AUTHCHECK_CACHE Sets whether the CACHE service
will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_CMS Sets whether the CMS service will
perform authorization checking for
its commands.

Anytime.

AUTHCHECK_CONFIG Sets whether the CONFIG service
will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_CP Sets whether the CP service will
perform authorization checking for
its commands.

Anytime.

66 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 31. Configuration Variables (continued)

Variable Function When? Notes

AUTHCHECK_ENROLL Sets whether the ENROLL service
will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_LD Sets whether line drivers will
perform authorization checking for
START or STOP commands.

Anytime.

AUTHCHECK_MONITOR Sets whether the MONITOR service
will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_SERVER Sets whether the SERVER service
will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_SGP Sets whether the SGP service will
perform authorization checking for
its commands.

Anytime.

AUTHCHECK_TRIE Sets whether the TRIE service will
perform authorization checking for
its commands.

Anytime.

AUTHCHECK_USERID Sets whether the USERID service
will perform authorization
checking for its commands.

Anytime.

AUTHCHECK_WORKER Sets whether the WORKER service
will perform authorization
checking for its commands.

Anytime.

MEM_MAXFREE Sets the maximum number of
pages that should be kept
preallocated by the reusable
server kernel storage manager for
any one subpool.

Anytime. Specify pages as a
positive integer.

MON_PRODUCT_ID Sets the 16-byte product identifier
the reusable server kernel will use
when it invokes DIAG X'00DC' to
identify the server's APPLDATA
monitor buffer.

Pre-
RUNSERV

MON_USER_SIZE Sets the size of the application
monitor buffer.

Pre-
RUNSERV

The address of the
application monitor
buffer is returned by
ssAnchorGet.

MON_KERNEL_ROWS Sets the number of rows the kernel
monitor buffer will contain.

Pre-
RUNSERV

MSG_NOHDR Sets whether the MSG/SMSG line
driver will use CP's MSGNOH
command to issue replies.

Anytime.

NOMAP_APPC Sets whether the APPC line driver
will pass an unmappable user ID
to an instance.

Anytime.

Chapter 12. Initialization and Profiles 67

Table 31. Configuration Variables (continued)

Variable Function When? Notes

NOMAP_IUCV Sets whether the IUCV line driver
will pass an unmappable user ID
to an instance.

Anytime.

NOMAP_MSG Sets whether the MSG/SMSG line
driver will pass an unmappable
user ID to an instance.

Anytime.

NOMAP_TCP Sets whether the TCP line driver
will pass an unmappable user ID
to an instance.

Anytime.

NOMAP_UDP Sets whether the UDP line driver
will pass an unmappable user ID
to an instance.

Anytime.

NOMAP_SPOOL Sets whether the SPOOL line driver
will pass an unmappable user ID
to an instance.

Anytime.

RSCS_USERID Sets the user ID of the RSCS
machine the SPOOL driver should
use.

Anytime.

SGP_FILE Sets the name of the storage group
definition file.

Pre-
RUNSERV

SPL_CATCHER Sets the user ID to which the
SPOOL line driver will CP
TRANSFER spool files it is unable
to decode.

Anytime.

SPL_INPUT_FT Sets the file type of reader files the
SPOOL line driver will recognize as
service input.

Anytime.

SPL_OUTPUT_FT Sets the file type of punch files the
SPOOL line driver will generate in
response to service output.

Anytime.

SRV_THREADS Sets the maximum number of
threads of a service a parallelizing
line driver will attempt to run
simultaneously.

Anytime.

UMAP_FILE Sets the name of the user ID
mapping file.

Anytime.

VM_CONSOLE Sets whether the console line
driver will pass unrecognized
command lines to CMS for
execution.

Anytime.

VM_MSG Sets whether the MSG/SMSG line
driver will pass unrecognized
messages to CMS for execution.

Anytime.

VM_SUBCOM Sets whether the SUBCOM line
driver will pass unrecognized
messages to CMS for execution.

Anytime.

68 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 31. Configuration Variables (continued)

Variable Function When? Notes

VM_SPOOL Sets whether the SPOOL line driver
will pass unrecognized input to
CMS for execution.

Anytime.

Storage Group Definition File
The storage groups known to the reusable server kernel are recorded in the file whose name is given in
configuration variable SGP_FILE. Each time an API call that changes the storage group configuration
executes successfully, the reusable server kernel rewrites the file. Thus storage group definitions persist
across invocations of the server program.

This file is not meant for manual manipulation. It should be manipulated only with the appropriate API
calls or administration commands.

This file must be present when the reusable server kernel starts. If it is not present, the reusable server
kernel will not start. To create the first-ever configuration file, just use XEDIT to make a one-record, V-
format file whose only record contains an asterisk as its first character. The reusable server kernel will
ignore this record and realize that no storage groups are defined.

User ID Mapping Facility
Frequently the reusable server kernel translates (nodeid,userid) pairs to single-token user IDs. This
mapping is part of the scheme by which the reusable server kernel presents single-token user IDs to
service instances. For example, the spool file line driver translates the origin node and origin user ID of a
request file into a single-token user ID and passes that single-token user ID to a service instance.
Similarly, the TCP/IP line driver translates the client's IP address into a single-token user ID. 24 Both
these translations are done through a translation database called the user ID mapping file. The user ID
mapping data is kept in a file whose name is given in configuration variable UMAP_FILE.

The reusable server kernel loads the mapping file into storage when the server starts and uses the in-
storage copy for translations. The command USERID RELOAD is available for reloading the in-storage
copy from disk. This lets the server operator change the mapping while the server is running.

Each time the reusable server kernel needs to translate a (userid,nodeid) pair to a single-token user ID,
the translation is done according to the rules in the mapping file. The translation scan goes from top to
bottom through the file, stopping at the first matching entry. The entries can contain wildcards to ease the
handling of groups of users (nodes, and so forth). The rules for wildcard use are the same as the rules for
wildcards in CMS Application Multitasking's IPC message keys and event keys.

The syntax rules for the user ID mapping file are illustrated in Appendix B, “Sample User ID Mapping
File,” on page 365 contains a sample user ID mapping file.

The mapping file must be present when the server starts; the server will not start without it.

24 For TCP/IP, nodeid is the IP address, and userid is *.

Chapter 12. Initialization and Profiles 69

70 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 13. Monitor Data

While the server runs, the reusable server kernel uses CP's APPLDATA facility (Diagnose X'00DC') to
accrue monitor data. The monitor data support is arranged so that both the reusable server kernel itself
and the server application can generate monitor data concurrently.

The monitor data facility works like this:

• As part of setting up the server virtual machine's CP directory entry, the system administrator must
insert OPTION APPLMON so that the server virtual machine will be permitted to produce monitor data.

• In PROFILE RSK prior to the RUNSERV command, the server author places CONFIG commands to set
the values of the MON_PRODUCT_ID and MON_KERNEL_ROWS configuration variables. These variables
control the following things:

– The value of MON_PRODUCT_ID is the product ID the reusable server kernel uses when it invokes
Diagnose X'00DC' to identify each monitor buffer.

– The value of MON_KERNEL_ROWS is the number of monitor rows the server kernel should allocate for
its own purposes. The minimum and default value is 36 rows.

• Just after RUNSERV, the server kernel allocates one or more monitor buffers according to the
configuration parameters specified, using Diagnose X'00DC' to identify each monitor buffer. If an error
occurs in trying to identify a monitor buffer, the server kernel will write a message to the server console,
specifying the Diagnose X'00DC' return code produced by CP. The server administrator will need to
interpret the return code and take appropriate action.

• While the server runs, the server kernel employs rows of the monitor buffer to log information pertinent
to the use of various resources (memory subpools, for example). Monitor data is produced for a
resource for only as long as the resource exists; when the resource is deleted, the monitor row is
marked free and might be reused later for some other resource.

• If the server application wants to produce its own monitor data, it can call entry point ssAnchorGet to
retrieve the address and length of the portion of the monitor buffer reserved for application use.

• The application can store information into the application portion of the monitor buffer, and the values
stored in the buffer will be picked up by CP as APPLDATA.

• As part of server shutdown, the server kernel invokes Diagnose X'00DC' again to retract the monitor
buffers.

Monitor Buffer Organization
The first part of each monitor buffer is reserved for use by the server kernel. This reserved portion is
organized into records called monitor rows. The first eight bytes of each row tell the kind of data accruing
in that row, according to Table 32 on page 71.

Table 32. Monitor Data Rows

Identifier Type of Row

KERNEL Kernel information

SERVICE Service information

LINEDRV Line driver information

AUTH Authorization information

SGP Storage group information

MEM Memory information

© Copyright IBM Corp. 1999, 2020 71

Table 32. Monitor Data Rows (continued)

Identifier Type of Row

ENROLL Enrollment information

CACHE File cache row

TRIE Trie API row

WORKER Worker API row

$UNUSED Unused row

After the area used by the server kernel comes the application portion of the monitor buffer. The
application can use ssAnchorGet to retrieve the address and length of this area.

The sections below describe the organizations of the server kernel's monitor buffer rows.

Kernel Row
The kernel row gives basic information about the organization of the monitor area. There is only one
kernel row per monitor buffer. In each monitor buffer, the kernel row is the first row in the buffer.

Table 33. KERNEL Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "KERNEL"

8 8 CHAR Blanks (X'40')

16 4 INT Number of rows

20 4 INT Size of row (bytes)

24 4 INT Size of application portion

28 4 INT Reserved for IBM

Service Row
A service row accumulates information about the operation of a specific service.

Table 34. SERVICE Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "SERVICE"

8 8 CHAR Service name

16 4 INT Reserved for IBM

20 4 INT Number of completed transactions

24 8 INT Total bytes from clients

32 8 INT Total bytes to clients

Line Driver Row
A line driver row accumulates information about the operation of a specific line driver.

72 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 35. LINEDRV Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "LINEDRV"

8 8 CHAR Service name

16 4 INT Reserved for IBM

20 4 INT Number of completed transactions

24 8 INT Total bytes from clients

32 8 INT Total bytes to clients

Authorization Row
The authorization row accumulates information about the operation of the authorization API.

Table 36. AUTH Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "AUTH"

8 8 CHAR Unused

16 4 INT Number of permits

20 4 INT Number of inquiries

24 4 INT Number of rows retrieved

28 4 INT Number of row cache hits

Storage Group Row
A storage group row accumulates information about the operation of a particular storage group.

Note that times are accrued only when I/O is performed through DIAG X'00A4'.

Table 37. SGP Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "SGP"

8 8 CHAR Storage group name

16 4 INT Reserved for IBM

20 4 INT I/O technique:
0

Diag X'A4'
1

Diag X'0250'
2

VM Data Spaces

24 4 INT Number of reads

28 8 INT Pages read

Chapter 13. Monitor Data 73

Table 37. SGP Monitor Row (continued)

Offset Length Data Type Usage

36 8 INT Time spent reading (STCK)

44 4 INT Number of writes

48 8 INT Pages written

56 8 INT Time spent writing (STCK)

Memory Row
A memory row accumulates information about the operation of a particular subpool.

Table 38. MEM Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "MEM"

8 8 CHAR Subpool name

16 4 INT Free storage in server kernel cache

20 4 INT Amount currently in use through ssMemoryAllocate

24 4 INT Calls to ssMemoryAllocate

28 8 INT Total taken through ssMemoryAllocate

36 4 INT Calls to ssMemoryRelease

40 8 INT Total returned through ssMemoryRelease

48 4 INT Times extended through CMSSTOR

52 8 INT Total taken through CMSSTOR

60 4 INT Times depleted through CMSSTOR

64 8 INT Total returned through CMSSTOR

Enrollment Row
An enrollment row accumulates information about the operation of a particular enrollment set.

Table 39. ENROLL Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "ENROLL"

8 8 CHAR Enrollment set name

16 4 INT Number of records in set

20 4 INT Bytes in use holding records

24 4 INT Count of insertions

28 4 INT Count of removals

32 4 INT Count of retrievals

74 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Cache Row
The cache row accumulates information about the operation of the file caching API.

Table 40. CACHE Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "CACHE"

8 8 CHAR Cache name

16 4 INT Cache size in bytes

20 4 INT Bytes in use

24 4 INT Files in cache

28 4 INT Number of opens

32 4 INT Number of hits

36 4 INT Number of discards

Trie Row
The trie row accumulates information about the operation of the trie API.

Table 41. TRIE Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "TRIE"

8 8 CHAR Trie name

16 4 INT Last free trie byte

20 4 INT Next free trie byte

24 4 INT Records indexed

28 4 INT Internal node count

32 4 INT Number of lookups done

36 4 INT Number of records returned

A trie's monitor data is maintained only in the virtual machine that owns the trie and is updated only when
the owning virtual machine performs an operation against the trie.

Worker Row
The worker row accumulates information about the operation of the worker machine API.

The worker row is updated every 30 seconds as long as there is activity through the worker API (if no calls
to the worker API happen, the row does not get updated). The worker row contains information about the
three most active worker classes, as measured by total number of worker connections since the server
started. The information in the worker row can be trusted if the STCK field of the row is nonzero. While the
row is being recomputed, the STCK field is set to zero. There is no guarantee that the classes will be
mentioned in the row in order of their activity - the most active class might appear in the "class 3" slot, for
example.

Chapter 13. Monitor Data 75

Table 42. WORKER Monitor Row

Offset Length Data Type Usage

0 8 CHAR String "WORKER"

8 8 CHAR Unused

16 8 DWORD STCK of last monitor row update

24 8 CHAR Class name 1

32 4 INT Total connections to class 1

36 4 INT Connections right now to class 1

40 8 CHAR Class name 2

48 4 INT Total connections to class 2

52 4 INT Connections right now to class 2

56 8 CHAR Class name 3

64 4 INT Total connections to class 3

68 4 INT Connections right now to class 3

76 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 14. Command Descriptions

NOT-PI

This chapter contains information that is NOT intended to be used as Programming Interfaces of z/VM.

This chapter describes commands made available by the set of services shipped as part of the reusable
server kernel:

Table 43. Command Subsets

Subset Description

APPC Provides a means of controlling the APPC/VM line driver.

AUTH Provides a means of manipulating the authorization database.

CACHE Provides a means of manipulating file caches.

CMS Provides a means of issuing CMS commands.

CONFIG Provides a means of manipulating configuration parameters.

CONSOLE Provides a means of manipulating the console line driver.

CP Provides a means of issuing CP commands.

ENROLL Provides a means of manipulating enrollment data.

IUCV Provides a means of manipulating the IUCV line driver.

MONITOR Provides a means of displaying monitor rows.

MSG Provides a means of manipulating the MSG/SMSG line driver.

SERVER Provides a means of controlling the execution of the server.

SGP Provides a means of manipulating storage groups.

SPOOL Provides a means of manipulating the SPOOL line driver.

SUBCOM Provides a means of manipulating the SUBCOM line driver.

TCP Provides a means of manipulating the TCP/IP line driver.

TRIE Provides a means of manipulating tries.

UDP Provides a means of manipulating the UDP/IP line driver.

USERID Provides a means of manipulating the user ID mapping file.

WORKER Provides a means of manipulating worker machine pools.

In truth, each of these command sets is implemented as a reusable server kernel service of the same
name. Said services all expect record-oriented input and they all produce record-oriented output. This
means that they can be sourced by any of the reusable server kernel's record-oriented line drivers. In
addition, these services can be sourced by the bulk data line drivers if the client program takes
responsibility for managing the data stream in record-oriented fashion (see Table 8 on page 12).

To set up the particular sourcing arrangement you want, use PROFILE RSK. For an example of a
PROFILE RSK that establishes several sourcing arrangements for each of these services, see Appendix
A, “Sample PROFILE RSK,” on page 361.

In addition to the specific messages listed in the command descriptions that follow, any of these
commands might produce any of these messages:

© Copyright IBM Corp. 1999, 2020 77

BKW0000I Operation completed OK.
BKW0001E Not authorized.
BKW0002E Enter a command.
BKW0003E Syntax error.
BKW0004E Unrecognized command.

For more information about messages, see Appendix H, “Messages,” on page 393.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 44 on page 78.

Table 44. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or constant in
uppercase letters, lowercase letters, or any combination.
However, some applications may have additional
conventions for using all-uppercase or all-lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

78 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 44. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Symbols

You must specify these symbols exactly as they appear in
the syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is on
the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this
example, you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Chapter 14. Command Descriptions 79

Table 44. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

80 z/VM: Reusable Server Kernel Prog. Guide & Ref.

APPC LIST

APPC LIST

Purpose

Lists the subtasks associated with the APPC/VM line driver.

Operands

None

Options

None

Usage Notes

The output form is:

Subtask ServName T ExitName Capacity InUse Threads Waiters
------- -------- - -------- -------- ----- ------- -------
0 ECHO G BKWG0000 40 0 1 0

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
ServName

The name of the service involved.
T

The type of APPC/VM resource, as follows:
G

APPC/VM global resource
L

APPC/VM local resource
P

APPC/VM private resource
ExitName

The name of the CMSIUCV exit the server kernel opened. Also known as the transaction program
name.

Capacity
The number of concurrent clients the subtask can handle.

InUse
The number of clients currently being handled.

Threads
The number of CMS threads working on behalf of this subtask.

Waiters
The number of clients whose conversations are waiting to be accepted (unhandled connection
pending interrupts).

APPC LIST

Chapter 14. Command Descriptions 81

Messages and Return Codes

BKW0201E Subtask not found.

APPC LIST

82 z/VM: Reusable Server Kernel Prog. Guide & Ref.

APPC QUERY

APPC QUERY subtaskid

Purpose

Queries a specific APPC/VM subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid IPVMID LUName BytesIn BytesOut
-------- ------- ------ ------ ------ ------- --------
1 01AFD1B8 BKW WADEB *USERID:WADEB 0 0

The columns have the following meanings:
Instance

The numeric identifier of the instance.
C-Block

The address of the instance's C-block.
Userid

The mapped user ID of the client.
IPVMID

The security user ID of the client.
LUName

The name of the LU at which the client resides.
BytesIn

The number of bytes the client has sent the instance.
BytesOut

The number of bytes the instance has sent the client.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

APPC QUERY

Chapter 14. Command Descriptions 83

APPC REPORT

APPC REPORT ON

OFF

Purpose

Toggles reporting state for the APPC line driver.

Operands
ON

Turns reporting on.
OFF

Turns reporting off.

Options

None

Usage Notes

When reporting is on, the APPC line driver issues the following messages to describe client activity:

• BKW1704I
• BKW1705I
• BKW1706I
• BKW1707I

For more information, see “APPC Line Driver Messages” on page 411.

Messages and Return Codes

None

APPC REPORT

84 z/VM: Reusable Server Kernel Prog. Guide & Ref.

APPC START

APPC START servicename

GLOBAL srv_threads servicename

GLOBAL

LOCAL

PRIVATE

maxclients

tpn

Purpose

Starts a service, connecting it to the APPC/VM line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
GLOBAL

The transaction program should be registered as an APPC/VM global resource.
LOCAL

The transaction program should be registered as an APPC/VM local resource.
PRIVATE

The transaction program should be registered as an APPC/VM private resource.
maxclients

The maximum number of clients this subtask should be permitted to serve concurrently.
tpn

The transaction program name the APPC/VM line driver should use.

Options
GLOBAL

The transaction program should be registered as an APPC/VM global resource.
srv_threads

The current value of configuration parameter SRV_THREADS.
servicename

The name of the service being started.

Usage Notes

1. To register a global or local resource, the server virtual machine's CP directory entry must be
appropriately configured.

2. To register a private resource, $SERVER$ NAMES must be set up correctly.
3. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

For more information, see z/VM: Connectivity.

APPC START

Chapter 14. Command Descriptions 85

Messages and Return Codes

BKW0005E Out of storage.
BKW0200E Service not found.
BKW0205E Prefix already in use.
BKW0206E Service INIT routine failed - RC=&1 RE=&2.
BKW0207E Start of self is prohibited.
BKW1607E Client count must be greater than zero.
BKW1608E Unable to HNDIUCV SET.
BKW1609E Unable to create controlling thread.
BKW1700E (Resource &1) CMSIUCV CONNECT to *IDENT RC=&2
BKW1702E Unable to identify APPC/VM resource.

APPC START

86 z/VM: Reusable Server Kernel Prog. Guide & Ref.

APPC STOP

APPC STOP subtaskid

NOW

Purpose

Stops a specific APPC/VM subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid

The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKW0201E Subtask not found.
BKW1600I Instance STOP requested.
BKW1606E Wait expired for STOP.

APPC STOP

Chapter 14. Command Descriptions 87

AUTH CRECLASS

AUTH CRECLASS class operation

Purpose

Creates an object class in the authorization database.

Operands
class

The name of the class to be created.
operation

The name of an operation to be defined on objects of this class.

Options

None

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKW0005E Out of storage.
BKW0007E RC=&1 RE=&2 from routine &3
BKW0800E The class specified already exists
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files

AUTH CRECLASS

88 z/VM: Reusable Server Kernel Prog. Guide & Ref.

AUTH CREOBJECT

AUTH CREOBJECT object class

Purpose

Creates an object class in the authorization database.

Operands
object

The name of the object to be created.
class

The name of the class to which the object is to belong.

Options

None

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKW0005E Out of storage.
BKW0007E RC=&1 RE=&2 from routine &3
BKW0800E The class specified already exists
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0805E The class specified does not exist
BKW0806E The object specified already exists

AUTH CREOBJECT

Chapter 14. Command Descriptions 89

AUTH DELCLASS

AUTH DELCLASS class

(

OBJECTSONLY

Purpose

Deletes the objects of a given class.

Operands
class

The class for which objects are to be deleted.

Options
OBJECTSONLY

Delete the objects for the class, but leave the class itself in the authorization database.

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If OBJECTSONLY is omitted, then the class itself is also deleted from the authorization database.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0805E The class specified does not exist
BKW0807E At least one of the options specified is unrecognized

AUTH DELCLASS

90 z/VM: Reusable Server Kernel Prog. Guide & Ref.

AUTH DELOBJECT

AUTH DELOBJECT object

(

RULESONLY

Purpose

Deletes the authorization rules for a given object.

Operands
object

The object for which rules are to be deleted.

Options
RULESONLY

Delete the rules for the object, but leave the object itself in the authorization database.

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If RULESONLY is omitted, then the object itself is also deleted from the authorization database.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0807E At least one of the options specified is unrecognized
BKW0808E The object specified does not exist

AUTH DELOBJECT

Chapter 14. Command Descriptions 91

AUTH DELUSER

AUTH DELUSER userid

class

Purpose

Deletes authorization rules for a user.

Operands
userid

The user ID for which authorization rules are to be deleted.
class

The class from which userid's rules are to be deleted.

Options

None

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If class is not specified, then userid's rules for all classes are deleted.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0807E At least one of the options specified is unrecognized
BKW0810E No rules exist for the userid specified

AUTH DELUSER

92 z/VM: Reusable Server Kernel Prog. Guide & Ref.

AUTH LISTCLASS

AUTH LISTCLASS
*

match_key

Purpose

Lists the classes defined in the authorization data.

Operands
match_key

The key a class ID must match in order for it to show up in the output.

Options

None

Usage Notes

1. match_key is expressed using the CMS Application Multitasking syntax for IPC and event keys.
2. For more information on the naming conventions and other limits for the authorization API, see

“Naming Conventions and Other Limits” on page 36.
3. Output from this command appears as follows:

For class: File
 R W

For class: Dir
 R W NR NW

For class: Service
 STRT STOP EXEC

The output just cites each class and then follows the citation with a list of the operations defined on it.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0805E The class specified does not exist
BKW0807E At least one of the options specified is unrecognized
BKW0813E No classes exist for the match key specified

AUTH LISTCLASS

Chapter 14. Command Descriptions 93

AUTH LISTOBJECT

AUTH LISTOBJECT class_id
*

match_key

Purpose

Lists the objects belonging to a specified class.

Operands
match_key

The key an object name must match in order for it to show up in the output.

Options

None

Usage Notes

1. Operand match_key is expressed using the CMS Application Multitasking syntax for IPC and event
keys.

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

3. Output from this command appears as follows:

For class: Service
ECHO
SGEXER
HTTP
AUTH
CACHE
CONFIG
ENROLL
MONITOR
SERVER
SGP
USERID
CP
CMS

The name of the class appears, followed by a list of the names of the objects in the class.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0805E The class specified does not exist
BKW0807E At least one of the options specified is unrecognized
BKW0814E No objects exist for the match key specified

AUTH LISTOBJECT

94 z/VM: Reusable Server Kernel Prog. Guide & Ref.

AUTH MODCLASS

AUTH MODCLASS class operation

Purpose

Adds operations to the definition of an existing object.

Operands
class

The name of the class to be modified.
operation

The name of an operation to be defined on objects of this class.

Options

None

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKW0005E Out of storage.
BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0805E The class specified does not exist
BKW0812E Operation limit for the class specified has been exceeded

AUTH MODCLASS

Chapter 14. Command Descriptions 95

AUTH PERMIT

AUTH PERMIT userid object operation

(ADD

(
ADD

REMOVE

REPLACE

Purpose

Controls the operations a user can perform on an object.

Operands
userid

The user ID to which this rule is to apply.
object

The object to which this rule is to apply.
operation

An operation defined on this object.

Options
ADD

This rule is to be added to userid's permissions for object.
REMOVE

This rule is to be removed from userid's permissions for object.
REPLACE

This rule is to replace userid's permissions for object.

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

BKW0005E Out of storage.
BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0808E The object specified does not exist

AUTH PERMIT

96 z/VM: Reusable Server Kernel Prog. Guide & Ref.

AUTH QOBJECT

AUTH QOBJECT object

userid

Purpose

Inquires about the permitted operations associated with a given object.

Operands
object

The object for which rules are to be displayed.
userid

The user ID for which rules are to be displayed.

Options

None

Usage Notes

1. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

2. If userid is supplied, then only userid's rules for object are displayed.
3. If userid is omitted, then all rules for object are displayed.
4. Output from this command is as follows:

For object: SGP
 For userid: RANDOPM
 STRT STOP

 For userid: BKW
 STRT STOP EXEC

The output identifies the user IDs for whom there are rules in the data and for each such user ID the
output lists the permitted operations.

Messages and Return Codes

BKW0005E Out of storage.
BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0803E Too many operations or options specified
BKW0808E The object specified does not exist
BKW0815E No userids exist for the object specified
BKW0816E No rules exist for the userid specified

AUTH QOBJECT

Chapter 14. Command Descriptions 97

AUTH RELOAD

AUTH RELOAD

Purpose

Causes the authorization API to reset its attempts to use the authorization database.

Operands

None

Options

None

Usage Notes

For support information, see “ssAuthReload — Reload Authorization Data” on page 240.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3
BKW0801E Unable to read the authorization files
BKW0802E Unable to write to the authorization files
BKW0811E Unable to open the authorization files

AUTH RELOAD

98 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKWENRCP

BKWENRCP fn
BKWENRDB *

ft
*

fm

dirid

Purpose

Removes redundant information from the SFS file holding an enrollment set.

Operands
set_name

The name of the set to be interrogated.
fn

The file name of the SFS enrollment file.
ft

The file type of the SFS enrollment file.
fm

The file mode of the SFS enrollment file.
dirid

The directory name of the SFS enrollment file.

Options

None

Usage Notes

1. BKWENRCP is an EXEC, not an internal command provided by the reusable server kernel (such as the
ENROLL command set).

2. To be processed by BKWENRCP, the SFS file containing the enrollment set must not be active -- that is,
the corresponding enrollment set must be dropped through ENROLL DROP before BKWENRCP can
work.

3. The output is written to the A file mode in a file whose file name matches fn and whose file type is
BKWENRCP.

4. If your enrollment set is very large, a large virtual machine might be required to process it.

Messages and Return Codes

The return codes produced by BKWENRCP all come from CMS Pipelines. For more information, see z/VM:
CMS Pipelines User's Guide and Reference.

BKWENRCP

Chapter 14. Command Descriptions 99

CACHE CREATE

CACHE CREATE cname

size

Purpose

Creates a file cache.

Operands
cname

The name of the file cache to be created.
size

The size of the file cache, in pages.

Options

None

Usage Notes

1. The name cname is used directly in a call to ssMemoryCreateDS and therefore must be unique
among all storage subpool names.

2. The cache size size is given in pages. It must be greater than zero and less than or equal to 524288.
The size you specify is rounded up to the next 16-page boundary. If you do not specify a size, a size of
16 MB is used.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

CACHE CREATE

100 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CACHE DELETE

CACHE DELETE cname

Purpose

Deletes a file cache.

Operands
cname

The name of the file cache to be deleted.

Options

None

Usage Notes

1. Once deletion starts, no more new files will be cached.
2. The deletion completes after the last file is closed.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

CACHE DELETE

Chapter 14. Command Descriptions 101

CACHE LIST

CACHE LIST

Purpose

Lists the set of file caches.

Operands

None

Options

None

Usage Notes

The output form is:

Name Size InUse FileCount Opens Hits
---- ---- ----- --------- ----- ----
CACHE1 16384000 433567 421 1633 1185
CACHE2 32768000 2236541 28 4532 4158

The columns have the following meanings:
Column

Meaning
Name

Name of cache
Size

Cache size in bytes
InUse

Bytes in use in cache
FileCount

Number of files in cache
Opens

Number of file opens processed
Hits

Number of cache hits on opens

Messages and Return Codes

BKW1500E No file caches found.

CACHE LIST

102 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CMS

CMS cms_command_string

Purpose

Provides a means of issuing CMS commands.

Operands
cms_command_string

The command string to pass to CMS.

Options

None

Usage Notes

The command is issued by passing it to the CMS subcommand environment.

Messages and Return Codes

BKW1000I RC=&1 from CMS.

CMS

Chapter 14. Command Descriptions 103

CONFIG AUT_CACHE

CONFIG AUT_CACHE rows

Purpose

Sets the number of authorization rows that will be cached.

Operands
rows

The number of rows to be cached.

Options

None

Usage Notes

For rows, specify a positive integer.

Messages and Return Codes

None

CONFIG AUT_CACHE

104 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUT_DATA_1

CONFIG AUT_DATA_1 filespec

Purpose

Sets the name of copy 1 of the authorization data file.

Operands
filespec

The name of copy 1 of the authorization data file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

CONFIG AUT_DATA_1

Chapter 14. Command Descriptions 105

CONFIG AUT_DATA_2

CONFIG AUT_DATA_2 filespec

Purpose

Sets the name of copy 2 of the authorization data file.

Operands
filespec

The name of copy 2 of the authorization data file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes

None

CONFIG AUT_DATA_2

106 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUT_FREE

CONFIG AUT_FREE rows

Purpose

Sets the maximum number of free buffers that will be retained for the purpose of caching authorization
rows.

Operands
rows

The maximum number of row buffers to retain.

Options

None

Usage Notes

For rows, specify a positive integer.

Messages and Return Codes

None

CONFIG AUT_FREE

Chapter 14. Command Descriptions 107

CONFIG AUT_INDEX_1

CONFIG AUT_INDEX_1 filespec

Purpose

Sets the name of copy 1 of the authorization index file.

Operands
filespec

The name of copy 1 of the authorization index file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

CONFIG AUT_INDEX_1

108 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUT_INDEX_2

CONFIG AUT_INDEX_2 filespec

Purpose

Sets the name of copy 2 of the authorization index file.

Operands
filespec

The name of copy 2 of the authorization index file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes

None

CONFIG AUT_INDEX_2

Chapter 14. Command Descriptions 109

CONFIG AUT_LOCATION

CONFIG AUT_LOCATION MINIDISK

SFS

Purpose

Sets the repository type of the authorization database.

Operands
MINIDISK

The authorization database is stored on CMS minidisks.
SFS

The authorization database is stored in the CMS Shared File System.

Options

None

Usage Notes

Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

CONFIG AUT_LOCATION

110 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUT_LOG

CONFIG AUT_LOG filespec

Purpose

Sets the name of the authorization logfile.

Operands
filespec

The name of the authorization logfile.

Options

None

Usage Notes

1. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.
2. For filespec, any syntax acceptable to DMSOPEN may be used.
3. This parameter is ignored when AUT_LOCATION is set to SFS.

Messages and Return Codes

None

CONFIG AUT_LOG

Chapter 14. Command Descriptions 111

CONFIG AUTHCHECK_AUTH

CONFIG AUTHCHECK_AUTH ON

OFF

Purpose

Controls whether the AUTH commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_AUTH

112 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUTHCHECK_CACHE

CONFIG AUTHCHECK_CACHE ON

OFF

Purpose

Controls whether the CACHE commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_CACHE

Chapter 14. Command Descriptions 113

CONFIG AUTHCHECK_CMS

CONFIG AUTHCHECK_CMS ON

OFF

Purpose

Controls whether the CMS service will perform authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_CMS

114 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUTHCHECK_CONFIG

CONFIG AUTHCHECK_CONFIG ON

OFF

Purpose

Controls whether the CONFIG commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_CONFIG

Chapter 14. Command Descriptions 115

CONFIG AUTHCHECK_CP

CONFIG AUTHCHECK_CP ON

OFF

Purpose

Controls whether the CP service will perform authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_CP

116 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUTHCHECK_ENROLL

CONFIG AUTHCHECK_ENROLL ON

OFF

Purpose

Controls whether the ENROLL service will perform authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_ENROLL

Chapter 14. Command Descriptions 117

CONFIG AUTHCHECK_LD

CONFIG AUTHCHECK_LD ON

OFF

Purpose

Controls whether line driver commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_LD

118 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUTHCHECK_MONITOR

CONFIG AUTHCHECK_MONITOR ON

OFF

Purpose

Controls whether the MONITOR service will perform authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_MONITOR

Chapter 14. Command Descriptions 119

CONFIG AUTHCHECK_SERVER

CONFIG AUTHCHECK_SERVER ON

OFF

Purpose

Controls whether the SERVER commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_SERVER

120 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUTHCHECK_SGP

CONFIG AUTHCHECK_SGP ON

OFF

Purpose

Controls whether the SGP commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_SGP

Chapter 14. Command Descriptions 121

CONFIG AUTHCHECK_TRIE

CONFIG AUTHCHECK_TRIE ON

OFF

Purpose

Controls whether the TRIE service will perform authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_TRIE

122 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG AUTHCHECK_USERID

CONFIG AUTHCHECK_USERID ON

OFF

Purpose

Controls whether the USERID commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_USERID

Chapter 14. Command Descriptions 123

CONFIG AUTHCHECK_WORKER

CONFIG AUTHCHECK_WORKER ON

OFF

Purpose

Controls whether the WORKER commands will be subject to authorization checking.

Operands
ON

Authorization checking will be performed.
OFF

Authorization checking will not be performed.

Options

None

Usage Notes

For more information, see “Other Services' Use of Authorization” on page 40 and Table 31 on page 66.

Messages and Return Codes

None

CONFIG AUTHCHECK_WORKER

124 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG MEM_MAXFREE

CONFIG MEM_MAXFREE pages

Purpose

Sets the maximum number of pages that the reusable server kernel storage manager will retain for a
given subpool before returning storage from that subpool to CMS.

Operands
pages

The maximum number of pages to retain.

Options

None

Usage Notes

For pages, specify a positive integer.

Messages and Return Codes

None

CONFIG MEM_MAXFREE

Chapter 14. Command Descriptions 125

CONFIG MON_KERNEL_ROWS

CONFIG MON_KERNEL_ROWS rows

Purpose

Sets the number of monitor data rows the reusable server kernel defines.

Operands
rows

The number of rows to define.

Options

None

Usage Notes

1. You must choose rows in range [36..55000].
2. The reusable server kernel rounds rows to the next higher multiple of 55. For example, if you ask for

75 rows you will actually get 110.

Messages and Return Codes

None

CONFIG MON_KERNEL_ROWS

126 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG MON_PRODUCT_ID

CONFIG MON_PRODUCT_ID identifier

Purpose

Sets the product identifier the reusable server kernel will use when it invokes Diagnose X'00DC' to start
APPLDATA monitor data collection.

Operands
identifier

The 16-byte identifier to use.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG MON_PRODUCT_ID

Chapter 14. Command Descriptions 127

CONFIG MON_USER_SIZE

CONFIG MON_USER_SIZE bytes

Purpose

Sets the size of the monitor buffer the reusable server kernel will reserve for application use.

Operands
bytes

The number of bytes to reserve.

Options

None

Usage Notes

This command is obsolete. No matter what you ask for, you will now get 3952 bytes of user monitor
buffer, which is the largest amount of user data the server kernel can put in a single monitor buffer.

Messages and Return Codes

None

CONFIG MON_USER_SIZE

128 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG MSG_NOHDR

CONFIG MSG_NOHDR ON

OFF

Purpose

Controls whether the MSG/SMSG line driver will use the MSGNOH command to reply to a client.

Operands

ON
MSGNOH will be used.

OFF
MSG will be used.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG MSG_NOHDR

Chapter 14. Command Descriptions 129

CONFIG NOMAP_APPC

CONFIG NOMAP_APPC ON

OFF

Purpose

Controls whether the APPC line driver will pass unmappable user IDs to a service instance.

Operands
ON

Unmappable user IDs will be passed.
OFF

Unmappable user IDs will be rejected.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG NOMAP_APPC

130 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG NOMAP_IUCV

CONFIG NOMAP_IUCV ON

OFF

Purpose

Controls whether the IUCV line driver will pass unmappable user IDs to a service instance.

Operands
ON

Unmappable user IDs will be passed.
OFF

Unmappable user IDs will be rejected.

Options

None

Usage Notes

If NOMAP_IUCV is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

CONFIG NOMAP_IUCV

Chapter 14. Command Descriptions 131

CONFIG NOMAP_MSG

CONFIG NOMAP_MSG ON

OFF

Purpose

Controls whether the MSG/SMSG line driver will pass unmappable user IDs to a service instance.

Operands
ON

Unmappable user IDs will be passed.
OFF

Unmappable user IDs will be rejected.

Options

None

Usage Notes

If NOMAP_MSG is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

CONFIG NOMAP_MSG

132 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG NOMAP_SPOOL

CONFIG NOMAP_SPOOL ON

OFF

Purpose

Controls whether the SPOOL line driver will pass unmappable user IDs to a service instance.

Operands
ON

Unmappable user IDs will be passed.
OFF

Unmappable user IDs will be rejected.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG NOMAP_SPOOL

Chapter 14. Command Descriptions 133

CONFIG NOMAP_TCP

CONFIG NOMAP_TCP ON

OFF

Purpose

Controls whether the TCP line driver will pass unmappable user IDs to a service instance.

Operands

ON
Unmappable user IDs will be passed.

OFF
Unmappable user IDs will be rejected.

Options

None

Usage Notes

If NOMAP_TCP is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

CONFIG NOMAP_TCP

134 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG NOMAP_UDP

CONFIG NOMAP_UDP ON

OFF

Purpose

Controls whether the UDP line driver will pass unmappable user IDs to a service instance.

Operands
ON

Unmappable user IDs will be passed.
OFF

Unmappable user IDs will be rejected.

Options

None

Usage Notes

If NOMAP_UDP is ON, unmappable user IDs will be passed as user ID $UNKNOWN.

Messages and Return Codes

None

CONFIG NOMAP_UDP

Chapter 14. Command Descriptions 135

CONFIG RSCS_USERID

CONFIG RSCS_USERID userid

Purpose

Sets the user ID of the virtual machine in which the SPOOL and MSG/SMSG line drivers will assume RSCS
is running.

Operands
userid

The user ID of the RSCS machine.

Options

None

Usage Notes

Most installations will tailor PROFILE RSK so that it issues CMS's IDENTIFY command, parses the
response so as to obtain the user ID of the RSCS machine, and then issues an appropriate CONFIG
RSCS_USERID command.

Messages and Return Codes

None

CONFIG RSCS_USERID

136 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG SGP_FILE

CONFIG SGP_FILE filespec

Purpose

Sets the name of the storage group configuration file.

Operands
filespec

The string identifying the storage group configuration file.

Options

None

Usage Notes

1. For filespec, any string acceptable to DMSOPEN is acceptable.
2. Changing this parameter has no effect after PROFILE RSK has issued RUNSERV.

Messages and Return Codes

None

CONFIG SGP_FILE

Chapter 14. Command Descriptions 137

CONFIG SPL_CATCHER

CONFIG SPL_CATCHER userid

Purpose

Controls the user ID to which the SPOOL driver will transfer spool files it is unable to decode.

Operands
userid

The user ID to which the SPOOL driver will transfer files it is unable to decode.

Options

None

Usage Notes

1. The SPOOL line driver is able to decode files sent in NETDATA (aka SENDFILE NEW) or DISK DUMP
(aka SENDFILE OLD) formats. All other formats are undecodable.

2. If userid is *, the reusable server kernel will leave such files in the server's reader in USER HOLD
status.

Messages and Return Codes

None

CONFIG SPL_CATCHER

138 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG SPL_INPUT_FT

CONFIG SPL_INPUT_FT filetype

Purpose

Controls the file type the SPOOL driver will recognize as input for a service.

Operands
filetype

The file type the SPOOL line driver will recognize.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG SPL_INPUT_FT

Chapter 14. Command Descriptions 139

CONFIG SPL_OUTPUT_FT

CONFIG SPL_OUTPUT_FT filetype

Purpose

Controls the file type the SPOOL driver will produce as output from a service.

Operands
filetype

The file type the SPOOL line driver will produce.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG SPL_OUTPUT_FT

140 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG SRV_THREADS

CONFIG SRV_THREADS threads

Purpose

Controls the number of threads on which a given line driver will attempt to run a given service.

Operands
threads

The maximum number of threads on which a given line driver will attempt to run a given service.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG SRV_THREADS

Chapter 14. Command Descriptions 141

CONFIG UMAP_FILE

CONFIG UMAP_FILE filespec

Purpose

Sets the name of the user ID mapping file.

Operands
filespec

The string identifying the user ID mapping file.

Options

None

Usage Notes

For filespec, any string acceptable to DMSOPEN is acceptable.

Messages and Return Codes

None

CONFIG UMAP_FILE

142 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG VM_CONSOLE

CONFIG VM_CONSOLE ON

OFF

Purpose

Controls whether the console line driver will pass unrecognized input to CMS for execution.

Operands
ON

The console driver will pass unrecognized input to CMS.
OFF

The console driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG VM_CONSOLE

Chapter 14. Command Descriptions 143

CONFIG VM_MSG

CONFIG VM_MSG ON

OFF

Purpose

Controls whether the MSG/SMSG line driver will pass unrecognized input to CMS for execution.

Operands
ON

The MSG/SMSG driver will pass unrecognized input to CMS.
OFF

The MSG/SMSG driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG VM_MSG

144 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG VM_SPOOL

CONFIG VM_SPOOL ON

OFF

Purpose

Controls whether the SPOOL line driver will pass unrecognized input to CMS for execution.

Operands
ON

The SPOOL driver will pass unrecognized input to CMS.
OFF

The SPOOL driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG VM_SPOOL

Chapter 14. Command Descriptions 145

CONFIG VM_SUBCOM

CONFIG VM_SUBCOM ON

OFF

Purpose

Controls whether the SUBCOM line driver will pass unrecognized input to CMS for execution.

Operands
ON

The SUBCOM driver will pass unrecognized input to CMS.
OFF

The SUBCOM driver will not pass unrecognized input to CMS.

Options

None

Usage Notes

None

Messages and Return Codes

None

CONFIG VM_SUBCOM

146 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONSOLE LIST

CONSOLE LIST

Purpose

Lists the subtasks associated with the console line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the console line driver. The output
form is:

Subtask Service Prefix Instances
------- ------- ------ ---------
0 CONSOLE CONSOLE 1
1 SERVER SERVER 1

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
Service

The name of the started service.
Prefix

The prefix used to send input to the service.
Instances

The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

CONSOLE LIST

Chapter 14. Command Descriptions 147

CONSOLE QUERY

CONSOLE QUERY subtaskid

Purpose

Queries a specific console subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut
-------- ------- -------- ------ ------- --------
1 01EE0F5C 16 * 175 446

In this output, the columns have the following meanings:
Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
BytesIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

CONSOLE QUERY

148 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONSOLE START

CONSOLE START servicename

prefix

Purpose

Starts a service, connecting it to the console line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
prefix

The prefix that will identify commands that should be sent to this service.

Options

None

Usage Notes

1. If prefix is not specified, the value of servicename is used for the prefix.
2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

Messages and Return Codes

BKW0005E Out of storage.
BKW0200E Service not found.
BKW0205E Prefix already in use.
BKW0206E Service INIT routine failed - RC=&1 RE=&2.
BKW0207E Start of self is prohibited.

CONSOLE START

Chapter 14. Command Descriptions 149

CONSOLE STOP

CONSOLE STOP subtaskid

NOW

Purpose

Stops a specific console subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid

The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKW0201E Subtask not found.
BKW0202E Stop of self is prohibited.
BKW0203I Subtask asked to STOP.
BKW0204I Subtask killed.

CONSOLE STOP

150 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CP

CP cp_command_string

Purpose

Provides a means of issuing CP commands.

Operands
cp_command_string

The command string to pass to CP.

Options

None

Usage Notes

The command is issued by passing it to CP through DIAG X'08'.

Messages and Return Codes

BKW0900I RC=&1 from CP.
BKW0901E CP response was truncated.
BKW0902E CP command was too long.

CP

Chapter 14. Command Descriptions 151

ENROLL COMMIT

ENROLL COMMIT set_name

Purpose

Commits changes to the named enrollment set.

Operands
set_name

The name of the set to be committed.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 264.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL COMMIT

152 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ENROLL DROP

ENROLL DROP set_name
COMMIT

ROLLBACK

Purpose

Commits changes to the named enrollment set.

Operands
set_name

The name of the set to be committed.
COMMIT

The uncommitted changes should be committed.
ROLLBACK

The uncommitted changes should be rolled back.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 266.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL DROP

Chapter 14. Command Descriptions 153

ENROLL GET

ENROLL GET set_name key

Purpose

Retrieves a record from an enrollment set.

Operands
set_name

The name of the set to be interrogated.
key

The key of the record to be retrieved.

Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a space.
2. For more information, see “Usage Notes” on page 272.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL GET

154 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ENROLL INSERT

ENROLL INSERT set_name key data

Purpose

Inserts or replaces a record in an enrollment set.

Operands
set_name

The name of the set to be updated.
key

The key of the record to be inserted.
data

The data to be inserted.

Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a space.
2. The record is inserted with method ss_enr_insert_replace.
3. For more information, see “Usage Notes” on page 274.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL INSERT

Chapter 14. Command Descriptions 155

ENROLL LIST

ENROLL LIST

Purpose

Generates a list of the loaded enrollment sets.

Operands

None

Options

None

Usage Notes

For more information, see “ssEnrollList — List Enrollment Sets” on page 268.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL LIST

156 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ENROLL LOAD

ENROLL LOAD set_name DISK

MEM

size filename

Purpose

Loads an enrollment set from the Shared File System, or initializes a transient enrollment set.

Operands
set_name

The name of the set to be loaded.
DISK

This is a permanent enrollment set.
MEM

This is a transient enrollment set.
size

The data space size to use, in pages.
filename

The file specification of the Shared File System file to be used.

Options

None

Usage Notes

For more information, see “ssEnrollLoad — Load Enrollment Set” on page 270.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL LOAD

Chapter 14. Command Descriptions 157

ENROLL RECLIST

ENROLL RECLIST set_name

Purpose

Generates a list of the keys of the records stored in the named enrollment set.

Operands
set_name

The name of the set to be interrogated.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 276.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL RECLIST

158 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ENROLL REMOVE

ENROLL REMOVE set_name key

Purpose

Removes a record from an enrollment set.

Operands
set_name

The name of the set to be updated.
key

The key of the record to be removed.

Options

None

Usage Notes

1. Due to parsing considerations, key must not contain a left parenthesis or a space.
2. For more information, see “Usage Notes” on page 278.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

ENROLL REMOVE

Chapter 14. Command Descriptions 159

IUCV LIST

IUCV LIST

Purpose

Lists the subtasks associated with the IUCV line driver.

Operands

None

Options

None

Usage Notes

The output form is:

Subtask ServName ExitName Capacity InUse Threads Waiters
------- -------- -------- -------- ----- ------- -------
0 ECHO ECHO 40 0 1 0

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
ServName

The name of the started service.
ExitName

The name of the IUCV exit for this subtask.
Capacity

The number of clients this subtask can handle concurrently.
InUse

The number of clients currently connected.
Threads

The number of threads available to service clients of this subtask.
Waiters

The number of clients waiting to be serviced.

Messages and Return Codes

BKW0201E Subtask not found.

IUCV LIST

160 z/VM: Reusable Server Kernel Prog. Guide & Ref.

IUCV QUERY

IUCV QUERY subtaskid

Purpose

Queries a specific IUCV subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid BytesIn BytesOut
-------- ------- ------ ------- --------
32 01D2E6DC RICHARD 22 22

The columns have the following meanings:
Instance

The numeric identifier of the instance.
C-Block

The address of the C-block for this client.
Userid

The mapped user ID of the client.
BytesIn

The number of bytes the IUCV line driver has queued for the instance.
BytesOut

The number of bytes the instance has queued for the IUCV line driver to transmit to the client.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

IUCV QUERY

Chapter 14. Command Descriptions 161

IUCV REPORT

IUCV REPORT ON

OFF

Purpose

Toggles reporting state for the IUCV line driver.

Operands
ON

Turns reporting on.
OFF

Turns reporting off.

Options

None

Usage Notes

When reporting is on, the IUCV line driver issues the following messages to describe client activity:

• BKW1602I
• BKW1603I
• BKW1604I
• BKW1605I

For more information, see “IUCV Line Driver Messages” on page 409.

Messages and Return Codes

None

IUCV REPORT

162 z/VM: Reusable Server Kernel Prog. Guide & Ref.

IUCV START

IUCV START servicename

maxclients

exitname

Purpose

Starts a service, connecting it to the IUCV line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
maxclients

The maximum number of concurrent clients permitted for the subtask.
exitname

The HNDIUCV exit name to be used for the subtask.

Options

None

Usage Notes

1. If maxclients is not specified, the current value of configuration parameter SRV_THREADS is used.
2. If exitname is not specified, the value of servicename is used.
3. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

Messages and Return Codes

BKW0200E Service not found.
BKW0207E Start of self is prohibited.
BKW1607E Client count must be greater than zero.
BKW1608E Unable to HNDIUCV SET.
BKW1609E Unable to create controlling thread.

IUCV START

Chapter 14. Command Descriptions 163

IUCV STOP

IUCV STOP subtaskid

NOW

instance

Purpose

Stops a specific IUCV subtask, optionally denying currently-connected clients the privilege of completing
their operations, or stops a specific client and affiliated instance.

Operands
subtaskid

The identifier of the subtask to stop.
instance

The number of the instance to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

1. If NOW is specified, the subtask is stopped immediately and clients are not given the opportunity to
finish their work.

2. If instance is specified, only that specific connection is terminated.

Messages and Return Codes

BKW0201E Subtask not found.
BKW1600I Instance STOP requested.
BKW1606E Wait expired for STOP.

IUCV STOP

164 z/VM: Reusable Server Kernel Prog. Guide & Ref.

MONITOR DISPLAY

MONITOR DISPLAY

type
name

Purpose

Displays one or more rows of monitor data.

Operands
type

The type of monitor row to display.
size

The name of a specific monitor row of the given type.

Options

None

Usage Notes

1. If type is not specified, all monitor rows are displayed.
2. If only type is specified, all rows of the specified type are displayed.
3. If both type and name are specified, the specific row described is displayed.
4. For each qualifying monitor row, the display consists simply of the address and length of the row and

the storage at those locations.

Messages and Return Codes

BKW1400E Matching monitor row not found.

MONITOR DISPLAY

Chapter 14. Command Descriptions 165

MONITOR USER

MONITOR USER

Purpose

Displays the user monitor buffer.

Operands

None

Options

None

Usage Notes

The display consists simply of the address and length of the user monitor buffer and the storage at those
locations.

Messages and Return Codes

None

MONITOR USER

166 z/VM: Reusable Server Kernel Prog. Guide & Ref.

MSG LIST

MSG LIST

Purpose

Lists the subtasks associated with the MSG/SMSG line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the MSG/SMSG line driver. The
output form is:

Subtask Service Prefix Instances
------- ------- ------ ---------
0 MSG MSG 1
1 SERVER SERVER 1

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
Service

The name of the started service.
Prefix

The prefix used to send input to the service.
Instances

The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

MSG LIST

Chapter 14. Command Descriptions 167

MSG QUERY

MSG QUERY subtaskid

Purpose

Queries a specific MSG/SMSG subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut
-------- ------- -------- ------ ------- --------
1 01EE0F5C 16 BKW 175 446

In this output, the columns have the following meanings:
Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
BytesIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

MSG QUERY

168 z/VM: Reusable Server Kernel Prog. Guide & Ref.

MSG START

MSG START servicename

prefix

Purpose

Starts a service, connecting it to the MSG/SMSG line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
prefix

The prefix that will identify commands that should be sent to this service.

Options

None

Usage Notes

1. If prefix is not specified, then the value of servicename is used for the prefix.
2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

Messages and Return Codes

BKW0005E Out of storage.
BKW0200E Service not found.
BKW0205E Prefix already in use.
BKW0206E Service INIT routine failed - RC=&1 RE=&2.
BKW0207E Start of self is prohibited.

MSG START

Chapter 14. Command Descriptions 169

MSG STOP

MSG STOP subtaskid

NOW

Purpose

Stops a specific MSG/SMSG subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid

The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKW0201E Subtask not found.
BKW0202E Stop of self is prohibited.
BKW0203I Subtask asked to STOP.
BKW0204I Subtask killed.

MSG STOP

170 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SERVER SERVICES

SERVER SERVICES

Purpose

Displays a summary of the bound services.

Operands

None

Options

None

Usage Notes

This command causes the reusable server kernel to display a list of the bound services with some
descriptive information about each service. The output form is:

Service S-block Type Init Service Term Count
------- ------- ---- ---- ------- ---- -----
USERID 01EFEF40 N 00000000 81E94530 81E94D18 0
SERVER 01EFEF70 N 00000000 81E94530 81E94D18 1
CONFIG 01EFEFA0 N 00000000 81E94530 81E94D18 1
CONSOLE 01EFEFD0 LDSS 81E93478 81E939C8 81E94408 1

The meanings of the columns are:
Service

The name of the bound service.
S-block

The address of the service's S-block.
Type

The type of the bound service. Types are:
N

Normal service
LD

Line driver
LDSS

Self-sourced line driver
Init

The address of the service's initialization routine.
Service

The address of the service's service routine.
Term

The address of the service's termination routine.
Count

The number of line drivers that have started this service.

Messages and Return Codes

None

SERVER SERVICES

Chapter 14. Command Descriptions 171

SERVER MONITOR

SERVER MONITOR

Purpose

Gives information about the Diagnose X'00DC' monitor buffers.

Operands

None

Options

None

Usage Notes

For each monitor buffer, this command tells the user the:

• Location of the monitor buffer
• Size of the monitor buffer
• Number of rows in the monitor buffer
• Number of free rows in the monitor buffer

Messages and Return Codes

BKW0301I Monitor buffer at &1.&2, &3 rows, &4 free

SERVER MONITOR

172 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SERVER STOP

SERVER STOP

Purpose

Stops the server and the reusable server kernel.

Operands

None

Options

None

Usage Notes

Issuing this command is equivalent to calling entry point ssServerStop. Both of these facilities cause
WAITSERV to complete.

Messages and Return Codes

None

SERVER STOP

Chapter 14. Command Descriptions 173

SGP CREATE

SGP CREATE sgn mdisk

Purpose

Creates a storage group.

Operands
sgn

The number of the storage group to create.
mdisk

The device number of a minidisk to be used for the storage group.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 293.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

SGP CREATE

174 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SGP DELETE

SGP DELETE sgn

Purpose

Deletes a storage group.

Operands
sgn

The number of the storage group to delete.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 295.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

SGP DELETE

Chapter 14. Command Descriptions 175

SGP LIST

SGP LIST

Purpose

Displays a list of the known storage groups.

Operands

None

Options

None

Usage Notes

1. This command causes the reusable server kernel to display a list of the known storage groups. The
output format is:

SGrp Name Blocks IOMode Status
---- ---- ------ ------ ------
2 main 4000 blk-rw 40000000
5 spare 82400 blk-ro 20000000

The meanings of the columns are:
SGrp

The storage group number.
Name

The name of the storage group.
Blocks

The total number of 4 KB blocks in the storage group.
IOMode

The mode in which the storage group was started.
off

not started
blk-ro

block mode read-only
blk-rw

block mode read-write
Status

Status bits
X'80000000'

Stop is in progress
X'40000000'

I/O using VM Data Spaces
X'20000000'

I/O using DIAG X'250'
2. For more information, see “Usage Notes” on page 299 and “Usage Notes” on page 302.

SGP LIST

176 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Messages and Return Codes

BKW0005E Out of storage.
BKW0007E RC=&1 RE=&2 from routine &3

SGP LIST

Chapter 14. Command Descriptions 177

SGP MDLIST

SGP MDLIST sgn

Purpose

Displays specific information about the minidisks of a storage group.

Operands
sgn

The number of the storage group to interrogate.

Options

None

Usage Notes

1. This command causes the reusable server kernel to display a list of the minidisks associated with a
given storage group. The output format is:

VDev Blocks
---- ------
1004 34006
0FC2 14200

The meanings of the columns are:
VDev

The device number of the minidisk.
Total

The number of 4 KB blocks on the minidisk.
2. For more information, see “Usage Notes” on page 302.

Messages and Return Codes

BKW0005E Out of storage.
BKW0007E RC=&1 RE=&2 from routine &3

SGP MDLIST

178 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SGP START

SGP START sgn groupname
BLOCKRW

BLOCKRO

BLOCKRW

DS

DS

NODS

Purpose

Starts a specific storage group.

Operands
sgn

The number of the storage group to start.
groupname

The symbolic name to be assigned to the storage group.
BLOCKRO

The storage group should be started in block mode read-only.
BLOCKRW

The storage group should be started in block mode read-write.
DS

The reusable server kernel should attempt to use VM Data Spaces for I/O.
NODS

The reusable server kernel should not attempt to use VM Data Spaces for I/O.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 306.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

SGP START

Chapter 14. Command Descriptions 179

SGP STOP

SGP STOP sgn

Purpose

Stops a specific storage group.

Operands
sgn

The number of the storage group to stop.

Options

None

Usage Notes

For more information, see “Usage Notes” on page 309.

Messages and Return Codes

BKW0007E RC=&1 RE=&2 from routine &3

SGP STOP

180 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SPOOL LIST

SPOOL LIST

Purpose

Lists the subtasks associated with the SPOOL line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the spool line driver. The output
form is:

Subtask Service Prefix Instances
------- ------- ------ ---------
0 SPOOL SPOOL 1
1 SERVER SERVER 1

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
Service

The name of the started service.
Prefix

The file name used to send input to the service.
Instances

The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

SPOOL LIST

Chapter 14. Command Descriptions 181

SPOOL QUERY

SPOOL QUERY subtaskid

Purpose

Queries a specific SPOOL subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut
-------- ------- -------- ------ ------- --------
1 01EE0F5C 16 BKW 175 446

In this output, the columns have the following meanings:
Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
BytesIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

SPOOL QUERY

182 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SPOOL START

SPOOL START servicename spoolfn

Purpose

Starts a service, connecting it to the SPOOL line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
spoolfn

The file name of spool files that should be directed to this service.

Options

None

Usage Notes

1. If prefix is not specified, then the value of servicename is used for the prefix.
2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

Messages and Return Codes

BKW0005E Out of storage.
BKW0200E Service not found.
BKW0205E Prefix already in use.
BKW0206E Service INIT routine failed - RC=&1 RE=&2.
BKW0207E Start of self is prohibited.

SPOOL START

Chapter 14. Command Descriptions 183

SPOOL STOP

SPOOL STOP subtaskid

NOW

Purpose

Stops a specific SPOOL subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid

The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKW0201E Subtask not found.
BKW0202E Stop of self is prohibited.
BKW0203I Subtask asked to STOP.
BKW0204I Subtask killed.

SPOOL STOP

184 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SUBCOM LIST

SUBCOM LIST

Purpose

Lists the subtasks associated with the SUBCOM line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the SUBCOM line driver. The
output form is:

Subtask Service Prefix Instances
------- ------- ------ ---------
0 SUBCOM SUBCOM 1
1 SERVER SERVER 1

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
Service

The name of the started service.
Prefix

The prefix used to send input to the service.
Instances

The number of instances of the service the line driver is controlling.

Messages and Return Codes

None

SUBCOM LIST

Chapter 14. Command Descriptions 185

SUBCOM QUERY

SUBCOM QUERY subtaskid

Purpose

Queries a specific SUBCOM subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

This command displays information about all of the instances of the requested subtask. The output form
is:

Instance C-block ThreadID Userid BytesIn BytesOut
-------- ------- -------- ------ ------- --------
1 01EE0F5C 16 * 175 446

In this output, the columns have the following meanings:
Instance

The numeric identifier of the instance.
C-block

The address of the instance's C-block.
ThreadID

The CMS thread ID of the thread on which the instance is running.
Userid

The user ID of the client affiliated with the instance.
BytesIn

The number of bytes the client has provided to the instance.
BytesOut

The number of bytes the instance has provided to the client.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

SUBCOM QUERY

186 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SUBCOM START

SUBCOM START servicename

prefix

Purpose

Starts a service, connecting it to the SUBCOM line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
prefix

The prefix that will identify commands that should be sent to this service.

Options

None

Usage Notes

1. If prefix is not specified, the value of servicename is used for the prefix.
2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

Messages and Return Codes

BKW0005E Out of storage.
BKW0200E Service not found.
BKW0205E Prefix already in use.
BKW0206E Service INIT routine failed - RC=&1 RE=&2.
BKW0207E Start of self is prohibited.

SUBCOM START

Chapter 14. Command Descriptions 187

SUBCOM STOP

SUBCOM STOP subtaskid

NOW

Purpose

Stops a specific SUBCOM subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid

The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKW0201E Subtask not found.
BKW0202E Stop of self is prohibited.
BKW0203I Subtask asked to STOP.
BKW0204I Subtask killed.

SUBCOM STOP

188 z/VM: Reusable Server Kernel Prog. Guide & Ref.

TCP LIST

TCP LIST

Purpose

Lists the subtasks associated with the TCP/IP line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the TCP/IP line driver. The output
form is:

Subtask ServName BPort Adapter_Address TCPStack Sokts InUse Thrds
------- -------- ----- --------------- -------- ----- ----- -----
2 WEBSERV 80 0.0.0.0 TCPIP 100 17 31
4 WEBADMIN 90 9.117.32.29 TCPIP 50 4 13

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
ServName

The name of the started service.
BPort

The port number to which the service is bound.
Adapter_Address

The adapter address to which the port is bound.
TCPStack

The user ID of the TCP/IP virtual machine through which this subtask's TCP activity is taking place.
Sokts

The number of sockets available to the subtask.
InUse

The number of sockets currently in use.
Thrds

The number of CMS threads servicing this subtask.

Messages and Return Codes

BKW0201E Subtask not found.

TCP LIST

Chapter 14. Command Descriptions 189

TCP QUERY

TCP QUERY subtaskid

Purpose

Queries a specific TCP/IP subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid RPort Remote_Host BytesIn BytesOut
-------- ------- ------ ----- ----------- ------- --------
2 030F0210 PAUL 1401 9.130.79.171 165 32436
5 030F0500 FRED 833 9.117.32.29 8223 11234385

The columns and their meanings are:
Instance

The numeric identifier of this instance.
C-Block

The address of the instance's C-block.
Userid

The mapped user ID of the client being served by this instance, as produced by the ssUseridMap.
RPort

The port number through which the client's connection is exiting the client computer.
Remote_Host

The IP address of the client computer.
BytesIn

The number of bytes received from the client so far.
BytesOut

The number of bytes sent to the client so far.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

TCP QUERY

190 z/VM: Reusable Server Kernel Prog. Guide & Ref.

TCP REPORT

TCP REPORT ON

OFF

Purpose

Toggles reporting state for the TCP/IP line driver.

Operands
ON

Turns reporting on.
OFF

Turns reporting off.

Options

None

Usage Notes

When reporting is on, the TCP/IP line driver issues the following messages to describe client activity:

• BKW0500I
• BKW0501I
• BKW0502I
• BKW0504I

For more information, see “TCP and UDP Line Driver Messages” on page 397.

Messages and Return Codes

None

TCP REPORT

Chapter 14. Command Descriptions 191

TCP START

TCP START servicename port

50 0.0.0.0 TCPIP

sockets
0.0.0.0 TCPIP

adapter
TCPIP

tcpname

Purpose

Starts a service, connecting it to the TCP line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
port

The port number on which the reusable server kernel should make the service available.
sockets

The number of sockets the reusable server kernel should make available for this port.
adapter

The IP address of the adapter over which you want this service to accept requests (specify 0.0.0.0
to mean “any of this VM system's adapters”).

tcpname
The name of the TCP/IP service machine through which the reusable server kernel should access the
TCP/IP network.

Options

None

Usage Notes

1. Operand port must be between 1 and 65535 inclusive.
2. Operand sockets must be between 50 and 2000 inclusive.
3. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

Messages and Return Codes

BKW0200E Service not found.
BKW0207E Start of self is prohibited.
BKW0513E Port number must be in range [0..65535].
BKW0514E Socket count must be in range [50..2000].
BKW0005E Out of storage.
BKW0516E Creation of subtask controller thread failed.
BKW0517E Creation of TCP/IP socket group failed.

TCP START

192 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKW0518E Creation of listen socket failed.
BKW0519E Setting listen socket to SO_REUSEADDR failed.
BKW0520E Setting listen socket to nonblocking failed.
BKW0521E bind() for listen socket failed.
BKW0522E listen() for listen socket failed.

TCP START

Chapter 14. Command Descriptions 193

TCP STOP

TCP STOP subtaskid

NOW

Purpose

Stops a specific TCP/IP subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid

The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKW0201E Subtask not found.
BKW0523I Instance STOP requested.
BKW0524E Wait expired for STOP.

TCP STOP

194 z/VM: Reusable Server Kernel Prog. Guide & Ref.

TRIE LIST

TRIE LIST

Purpose

Lists the tries created by this virtual machine.

Operands

None

Options

None

Usage Notes

The output form is:

Name ASIT LastFree NextFree Nodes Records
---- ---------------- -------- -------- ----- -------
D0000001 7690F9000000001E 7FFFFFFF 0F4585B8 3050166 421008
D0000002 7690F88000000008 3FFFFFFF 2B934EEC 8697007 421008

The columns have the following meanings:
Name

The trie name supplied by the creator.
ASIT

The ASIT of the data space containing the trie.
LastFree

The address of the last byte of the trie data space.
NextFree

The address of the next free byte in the trie data space.
Nodes

The number of nodes in the trie.
Records

The number of record numbers being held onto by the trie.

Messages and Return Codes

BKW1900E No tries found.

TRIE LIST

Chapter 14. Command Descriptions 195

UDP LIST

UDP LIST

Purpose

Lists the subtasks associated with the UDP/IP line driver.

Operands

None

Options

None

Usage Notes

This command displays information about the services started through the UDP/IP line driver. The output
form is:

Subtask ServName BPort Adapter_Address TCPStack InProg Thrds
------- -------- ----- --------------- -------- ------ -----
2 MYSERV 85 0.0.0.0 TCPIP 17 31
4 MYADMIN 95 9.117.32.29 TCPIP 4 13

The columns have the following meanings:
Subtask

The numeric identifier of the subtask.
ServName

The name of the started service.
BPort

The port number to which the service is bound.
Adapter_Address

The adapter address to which the port is bound.
TCPStack

The user ID of the TCP/IP virtual machine through which this subtask's UDP activity is taking place.
InProg

The number of transactions in progress at the moment.
Thrds

The number of CMS threads servicing this subtask.

Messages and Return Codes

BKW0201E Subtask not found.

UDP LIST

196 z/VM: Reusable Server Kernel Prog. Guide & Ref.

UDP QUERY

UDP QUERY subtaskid

Purpose

Queries a specific UDP/IP subtask.

Operands
subtaskid

The identifier of the subtask to query.

Options

None

Usage Notes

The output form is:

Instance C-Block Userid RPort Remote_Host BytesIn BytesOut
-------- ------- ------ ----- ----------- ------- --------
2 030F0210 PAUL 1401 9.130.79.171 165 0
5 030F0500 FRED 833 9.117.32.29 8223 0

The columns and their meanings are:
Instance

The numeric identifier of this instance.
C-Block

The address of the instance's C-block.
Userid

The mapped user ID of the client being served by this instance, as produced by the ssUseridMap.
RPort

The port number through which the client's connection is exiting the client computer.
Remote_Host

The IP address of the client computer.
BytesIn

The number of bytes received from the client so far.
BytesOut

The number of bytes sent to the client so far.

Messages and Return Codes

BKW0201E Subtask not found.
BKW0208I Subtask is handling no clients.

UDP QUERY

Chapter 14. Command Descriptions 197

UDP REPORT

UDP REPORT ON

OFF

Purpose

Toggles reporting state for the UDP/IP line driver.

Operands
ON

Turns reporting on.
OFF

Turns reporting off.

Options

None

Usage Notes

When reporting is on, the UDP/IP line driver issues the following messages to describe client activity:

• BKW0500I
• BKW0501I
• BKW0502I
• BKW0504I

For more information, see “TCP and UDP Line Driver Messages” on page 397.

Messages and Return Codes

None

UDP REPORT

198 z/VM: Reusable Server Kernel Prog. Guide & Ref.

UDP START

UDP START servicename port
0.0.0.0 TCPIP

adapter
TCPIP

tcpname

Purpose

Starts a service, connecting it to the UDP line driver.

Operands
servicename

The name of the service to start, as specified on a call to ssServiceBind.
port

The port number on which the reusable server kernel should make the service available.
adapter

The IP address of the adapter over which you want this service to accept requests (specify 0.0.0.0
to mean “any of this VM system's adapters”).

tcpname
The name of the TCP/IP service machine through which the reusable server kernel should access the
TCP/IP network.

Options

None

Usage Notes

1. Operand port must be between 1 and 65535 inclusive.
2. The started service is identified by a number called the subtask ID. Use this identifier to refer to the

started service in future commands.

Messages and Return Codes

BKW0200E Service not found.
BKW0207E Start of self is prohibited.
BKW0513E Port number must be in range [0..65535].
BKW0514E Socket count must be in range [50..2000].
BKW0005E Out of storage.
BKW0516E Creation of subtask controller thread failed.
BKW0517E Creation of TCP/IP socket group failed.
BKW0518E Creation of listen socket failed.
BKW0519E Setting listen socket to SO_REUSEADDR failed.
BKW0520E Setting listen socket to nonblocking failed.
BKW0521E bind() for listen socket failed.
BKW0522E listen() for listen socket failed.

UDP START

Chapter 14. Command Descriptions 199

UDP STOP

UDP STOP subtaskid

NOW

Purpose

Stops a specific UDP/IP subtask, optionally denying currently-connected clients the privilege of
completing their operations.

Operands
subtaskid

The identifier of the subtask to stop.

Options
NOW

Stop the subtask without letting current clients complete normally.

Usage Notes

None

Messages and Return Codes

BKW0201E Subtask not found.
BKW0523I Instance STOP requested.
BKW0524E Wait expired for STOP.

UDP STOP

200 z/VM: Reusable Server Kernel Prog. Guide & Ref.

USERID MAP

USERID MAP line_driver_name node user

Purpose

Interrogates the user ID mapping file.

Operands
line_driver_name

The name of the line driver whose mapping is being interrogated.
node

The nodename as known to the specified line driver.
user

The user ID as known to the specified line driver.

Options

None

Usage Notes

The mapping is interrogated and the result displayed.

Messages and Return Codes

BKW0401I &1 &2 &3 maps to &4
BKW0402E RC=&1 RE=&2 mapping &3 &4 &5

USERID MAP

Chapter 14. Command Descriptions 201

USERID RELOAD

USERID RELOAD

Purpose

Reloads the user ID mapping file.

Operands

None

Options

None

Usage Notes

The user ID mapping file is reloaded from whatever file is nominated by configuration parameter
UMAP_FILE.

Messages and Return Codes

BKW0400E Reload failed - DMSOPEN or DMSREAD RC=&1 RE=&2.

USERID RELOAD

202 z/VM: Reusable Server Kernel Prog. Guide & Ref.

WORKER ADD

WORKER ADD classname userid
1

capacity

Purpose

Adds a worker machine to a worker class, creating the class if the class does not yet exist.

Operands
classname

The name of the worker class to which the worker machine should be added.
userid

The user ID of the worker virtual machine.
capacity

The number of IUCV connections the worker machine is capable of handling concurrently.

Options
1

The worker is capable of handling one connection at a time.

Usage Notes

1. Case is significant in class names.
2. Do not add a given worker virtual machine to more than one worker class. Unpredictable results will

occur.

Messages and Return Codes

BKW1800E Worker machine is already in the specified class.

WORKER ADD

Chapter 14. Command Descriptions 203

WORKER CLASSES

WORKER CLASSES

Purpose

Displays summary information about the worker classes.

Operands

None

Options

None

Usage Notes

The output format is:

Class D Machines C-Limit C-InUse
----- - -------- ------- -------
cgiserv n 2 2 0

The columns have the following meanings:
Column

Meaning
Class

Name of class
D

Whether workers are being managed as if they might be distributed on other nodes
y

Managed as if distributed
n

Managed as if local
Machines

Number of worker machines
C-Limit

Total number of connections permitted
C-InUse

Number of connections at the moment

Messages and Return Codes

BKW1803E No worker classes defined.

WORKER CLASSES

204 z/VM: Reusable Server Kernel Prog. Guide & Ref.

WORKER DELCLASS

WORKER DELCLASS classname

FORCE

Purpose

Deletes a worker class, requesting instances to close their connections to the workers therein.

Operands
classname

The name of the worker class being deleted.
FORCE

The server kernel should forcibly sever the IUCV connections to the workers in the class.

Options

None

Usage Notes

1. Case is significant in class names.
2. If FORCE is not specified, the server kernel sends each instance a message asking it to end its

connections with its workers in the affected class. Each instance is expected to finish up quickly and
end its connection.

3. If FORCE is specified, the server kernel will IUCV SEVER all connections to workers in the class and
inform each affected instance that its connections to those workers have been lost. After this, each
worker machine found to be running disconnected will be forced off through CP FORCE.

Messages and Return Codes

BKW1802E Worker class not found.

WORKER DELCLASS

Chapter 14. Command Descriptions 205

WORKER DELETE

WORKER DELETE userid

FORCE

Purpose

Deletes a single worker machine from its class.

Operands
userid

The user ID of the worker virtual machine.
FORCE

The server kernel should forcibly break any existing IUCV connections to the worker machine.

Options

None

Usage Notes

1. If FORCE is not specified, the server kernel sends each affected instance a message asking it to end its
connections with the worker. The instances are expected to finish up quickly and end their
connections to the worker.

2. If FORCE is specified, the server kernel will IUCV SEVER all connections to the worker and inform
each affected instance that its connections to the worker have been lost. After this, if the worker is
found to be running disconnected, it will be forced off through CP FORCE.

Messages and Return Codes

BKW1801E Worker machine not found.

WORKER DELETE

206 z/VM: Reusable Server Kernel Prog. Guide & Ref.

WORKER DISTRIBUTE

WORKER DISTRIBUTE classname ON

OFF

Purpose

Controls whether the reusable server kernel will attempt to manage a worker class as if the worker
machines were located on other systems.

Operands
classname

The name of the worker class to which the command applies.
ON

Manage as if distributed.
OFF

Manage as if local.

Options

None

Usage Notes

1. Case is significant in class names.
2. When you set DISTRIBUTE OFF for a class, the reusable server kernel manages the workers as if they

were running on the same instance of CP as the server itself. More specifically, the reusable server
kernel uses the XAUTOLOG and FORCE commands to control the workers in the class. For example, if
the server kernel determines that another worker needs to be logged on, it will issue XAUTOLOG to log
on the new worker.

3. When you set DISTRIBUTE ON for a class, the reusable server kernel manages the workers as if they
might be running on other systems. In particular, the reusable server kernel suppresses any attempts
it might make to use the XAUTOLOG or FORCE commands to manage the worker machines in the class.
Instead, responsibility for managing the machines is left to the server operator or system programmer.

Messages and Return Codes

BKW1802E Worker class not found.

WORKER DISTRIBUTE

Chapter 14. Command Descriptions 207

WORKER MACHINES

WORKER MACHINES classname

Purpose

Displays a table of status information about worker machines in a given class.

Operands
classname

The name of the class for which worker status should be displayed.

Options

None

Usage Notes

1. Case is significant in class names.
2. The output form is:

Machine State S Capacity InUse
------- ----- - -------- -----
MPT002 - 0 1 0

The columns have the following meanings:
Column

Meaning
Machine

The user ID of the worker machine
State

What CP QUERY USER reports about the worker machine, or - if the worker is not logged on
S

The status of the worker machine, as follows:
0

Seems usable
1

Repeated FORCE-XAUTOLOG cycles did not bring this worker to life
2

Tried to XAUTOLOG this worker but could not do so - possible insufficient privilege to use
XAUTOLOG command

3
Unrecoverable error trying to IUCV CONNECT

4
Tried to reset worker through CP FORCE but command failed - possible insufficient privilege to
use FORCE

5
CP FORCE succeeded but virtual machine did not log off - worker machine appears hung

Capacity
The number of IUCV connections the worker can handle concurrently

WORKER MACHINES

208 z/VM: Reusable Server Kernel Prog. Guide & Ref.

InUse
The number of IUCV connections to the worker right now

Messages and Return Codes

BKW1802E Worker class not found.
BKW1805E No worker machines found.

WORKER MACHINES

Chapter 14. Command Descriptions 209

WORKER RESET

WORKER RESET classname

userid

Purpose

Resets the status information the server kernel retains about a worker machine.

Operands
classname

The name of the class to be reset.
userid

The specific worker machine whose status is to be reset.

Options

None

Usage Notes

1. Case is significant in class names.
2. This command is meant to be used after manual intervention has supposedly resolved the problems

the server kernel has detected in trying to use a worker machine or a class of worker machines. For
example, the system administrator might have omitted the IUCV ALLOW statements in the workers'
CP directory entries, and when the server attempted to use those workers, it found it could not
connect to them. Once the CP directory has been repaired, WORKER RESET can be used to wipe out
the server kernel's memory of the difficulty.

3. If userid is omitted, the status for all machines in the class is reset.

Messages and Return Codes

BKW1801E Worker machine not found.
BKW1802E Worker class not found.

WORKER RESET

210 z/VM: Reusable Server Kernel Prog. Guide & Ref.

WORKER STATUS

WORKER STATUS

classname

Purpose

Displays information about the current set of connections to worker machines.

Operands
classname

The name of the worker class for which status information should be displayed.

Options

None

Usage Notes

1. Case is significant in class names.
2. The output form is:

Class Machine W-CBlock I-CBlock I-Service
----- ------- -------- -------- ---------
cgiserv MPT001 03FF3048 03FE21F8 HTTP

The columns and their meanings are:
Column

Meaning
Class

The worker class involved
Machine

The worker machine to which the connection leads
W-CBlock

The address of the worker C-block
I-CBlock

The address of the instance C-block
I-Service

The service with which the instance is affiliated

Messages and Return Codes

BKW1802E Worker class not found.
BKW1804E No worker connections found.

WORKER STATUS

Chapter 14. Command Descriptions 211

WORKER STATUS

212 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 15. Function Descriptions

This chapter describes application programming interfaces (APIs) provided as part of the reusable server
kernel. To review, the APIs can be partitioned into a number of subsets:

Table 45. Programming Interfaces

Subset Description

Anchor Provides a means for manipulating an anchor word.

Authorization Provides a means for manipulating an authorization database.

Cache Provides a means for manipulating cached files.

Client Provides a means for manipulating buffers of client data.

Enroll Provides a means for manipulating enrollment data.

Memory Provides a means for manipulating memory.

Server Provides a means for starting and stopping the server.

Service Provides a means for identifying services.

Storage group Provides a means for manipulating storage groups.

Tries Provides a means for manipulating tries.

User ID Provides a means for mapping user IDs.

Worker Provides a means for connecting to a worker machine.

Programmers should be aware of the these restrictions regarding the use of these APIs:

• RSKMAIN can call only ssServiceBind and ssServerRun.
• ssServiceBind can be called only by RSKMAIN and only before ssServerRun.
• ssServerRun can be called only by RSKMAIN and only once.

Note: Failure to adhere to these restrictions could cause unpredictable results.

© Copyright IBM Corp. 1999, 2020 213

ssAnchorGet — Get Anchor Value

ssAnchorGet

retcode
reascode
anchor
monbufptr
monbufsize

Purpose

Retrieves the value of the application-wide anchor word and the address and size of the application
monitor data area.

Operands
ssAnchorGet

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAnchorGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAnchorGet.

anchor
(output,INT,4) is a signed four-byte binary output variable to hold the returned anchor value.

monbufptr
(output,POINTER,4) is a signed four-byte binary output variable to hold the address of the application
monitor buffer.

monbufsize
(output,INT,4) is a signed four-byte binary output variable to hold the size of the application monitor
buffer.

Usage Notes

1. If the application-wide anchor word has not yet been set, this routine returns zero as the value of the
anchor word.

2. The value returned in monbufsize is the value of the MON_USER_SIZE configuration variable.

Messages and Return Codes

Return Code Reason Code Meaning

ss_anc_rc_success ss_anc_re_success ssAnchorGet completed successfully

ssAnchorGet

214 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Programming Language Bindings

Language Language Binding File

Assembler SSASMANC MACRO

PL/X SSPLXANC COPY

ssAnchorGet

Chapter 15. Function Descriptions 215

ssAnchorSet — Set Anchor Value

ssAnchorSet

retcode
reascode
anchor

Purpose

Sets the value of the application-wide anchor word.

Operands
ssAnchorSet

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAnchorSet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAnchorSet.

anchor
(input,INT,4) is a signed four-byte binary input variable holding the new anchor value.

Usage Notes

None

Messages and Return Codes

Return Code Reason Code Meaning

ss_anc_rc_success ss_anc_re_success ssAnchorSet completed successfully

Programming Language Bindings

Language Language Binding File

Assembler SSASMANC MACRO

PL/X SSPLXANC COPY

ssAnchorSet

216 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthCreateClass — Create an Object Class

ssAuthCreateClass

retcode
reascode
class_id
operation_count
operation_array

Purpose

Creates a class in the authorization rule base.

Operands
ssAuthCreateClass

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthCreateClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthCreateClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the new class.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the number of operations defined on
the class.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the operations defined on the
class.

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthCreateClass completed successfully

ss_aut_rc_error ss_aut_re_bad_count operation_count out of range

ss_aut_rc_error ss_aut_re_out_of_storage Not enough storage available

ss_aut_rc_error ss_aut_re_exists Class already exists

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ssAuthCreateClass

Chapter 15. Function Descriptions 217

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthCreateClass

218 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthCreateObject — Create an Object

ssAuthCreateObject

retcode
reascode
object_name
object_name_length
class_id

Purpose

Creates an object in the authorization rule base, assigning the object to the specified class.

Operands
ssAuthCreateObject

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthCreateObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthCreateObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

class_id
(input,INT,4) is a signed four-byte binary input variable holding the identifier of the class to which the
object belongs.

Usage Notes

For more information on the naming conventions and other limits for the authorization API, see “Naming
Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthCreateObject completed successfully

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_out_of_storage Not enough storage available

ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_error ss_aut_re_exists Object already exists

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ssAuthCreateObject

Chapter 15. Function Descriptions 219

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthCreateObject

220 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthDeleteClass — Delete a Class

ssAuthDeleteClass

retcode
reascode
class_id
option_count
option_array

Purpose

Deletes the objects in a class, and optionally deletes the class.

Operands
ssAuthDeleteClass

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthDeleteClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthDeleteClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the class to be deleted.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of options in option_array.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding the deletion
options.

Usage Notes

1. These options are recognized:
ss_aut_objects_only

Delete only the class's objects
ss_aut_objects_and_class

Delete the class and the class's objects (default)
2. For more information on the naming conventions and other limits for the authorization API, see

“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthDeleteClass completed successfully

ss_aut_rc_error ss_aut_re_bad_count option_count is out of range

ss_aut_rc_error ss_aut_re_bad_option At least one element of option_array is unrecognized

ssAuthDeleteClass

Chapter 15. Function Descriptions 221

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthDeleteClass

222 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthDeleteObject — Delete an Object

ssAuthDeleteObject

retcode
reascode
object_name
object_name_length
option_count
option_array

Purpose

Deletes the rules associated with an object, and optionally deletes the object.

Operands
ssAuthDeleteObject

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthDeleteObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthDeleteObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of options in option_array.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding the options to
be applied to the deletion.

Usage Notes

1. These deletion options are recognized:
ss_aut_rules_only

Delete only the object's rules
ss_aut_rules_and_object

Delete the object and all its rules (default)
2. For more information on the naming conventions and other limits for the authorization API, see

“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthDeleteObject completed successfully

ssAuthDeleteObject

Chapter 15. Function Descriptions 223

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_bad_count option_count is out of range

ss_aut_rc_error ss_aut_re_bad_option Unrecognized option in option_array

ss_aut_rc_error ss_aut_re_no_object Object does not exist

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthDeleteObject

224 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthDeleteUser — Delete a User

ssAuthDeleteUser

retcode
reascode
user_name
user_name_length
class_name
option_count
option_array

Purpose

Deletes rules associated with a given user.

Operands
ssAuthDeleteUser

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthDeleteUser.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthDeleteUser.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of user_name

class_name
(input,CHAR,8) is the name of the class from which rules should be deleted.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of deletion options
specified.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding the deletion
options.

Usage Notes

1. If no deletion options are specified, or if option ss_aut_all_classes is specified, then every rule
applicable to the named user is deleted.

2. If ss_aut_specific_class is specified in the options array, then the only rules deleted are those that both
apply to objects belonging to class class_name and mention the named user.

3. To adjust a given user's rules for a specific object, use routine ssAuthPermitUser.
4. For more information on the naming conventions and other limits for the authorization API, see

“Naming Conventions and Other Limits” on page 36.

ssAuthDeleteUser

Chapter 15. Function Descriptions 225

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthDeleteUser completed successfully

ss_aut_rc_error ss_aut_re_bad_user_lengt
h

user_name_length out of range

ss_aut_rc_error ss_aut_re_bad_count option_count out of range

ss_aut_rc_error ss_aut_re_bad_option Unrecognized option in option_array

ss_aut_rc_error ss_aut_re_no_user No rules exist for user_name

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthDeleteUser

226 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthListClasses — List Classes

ssAuthListClasses

retcode
reascode
match_key
match_key_length
classes_expected
class_buffer
classes_returned

Purpose

Returns a list of classes.

Operands
ssAuthListClasses

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthListClasses.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthListClasses.

match_key
(input,CHAR,match_key_length) is an input character string holding the match key.

match_key_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the match key.

classes_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of eight-byte class names
that will fit in class_buffer.

class_buffer
(output,CHAR,140*classes_expected) is an output buffer into which the list of classes and their
defined operations is to be placed.

classes_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of classes defined.

Usage Notes

1. ssAuthListClasses returns a list of the classes whose names match the match key specified by the
caller. The operations defined on those classes are also returned.

2. The key expressed in match_key is expressed according to the CMS Application Multitasking syntax for
IPC and event match keys.

3. Each class returned consumes 140 bytes in the output buffer, as follows:
Offset.Length

Usage

ssAuthListClasses

Chapter 15. Function Descriptions 227

0.8
Class name

8.4
Number of operations

12.128
Operations (4 bytes each)

4. If the actual number of classes defined is greater than classes_expected, then the actual number of
classes defined is returned in classes_returned, as many class names as will fit are filled into the
output buffer, and a warning return and reason code are produced.

5. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthListClasses completed successfully

ss_aut_rc_error ss_aut_re_bad_count classes_expected is out of range

ss_aut_rc_warning ss_aut_re_too_many Some class names did not fit into the output buffer

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthListClasses

228 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthListObjects — List Objects in Class

ssAuthListObjects

retcode
reascode
class_id
match_key
match_key_length
object_names_expected
object_name_buffer_pointers
object_name_buffer_sizes
object_name_lengths
object_names_returned

Purpose

Generates a list of the names of the objects belonging to a given class.

Operands
ssAuthListObjects

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthListObjects.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthListObjects.

class_id
(input,CHAR,8) is a character string holding the class to be interrogated.

match_key
(input,CHAR,match_key_length) is an input character string holding the match key.

match_key_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the match key.

object_names_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in the
object_name_buffer_pointers, object_name_buffer_sizes, and object_name_lengths arrays.

object_name_buffer_pointers
(input,POINTER,4*object_names_expected) is an array of pointers to buffers to hold the returned
object names.

object_name_buffer_sizes
(input,INT,4*object_names_expected) is an array of signed four-byte binary input variables holding the
sizes of the buffers pointed to by the elements of object_name_buffer_pointers.

object_name_lengths
(output,INT,4*object_names_expected) is an array of signed four-byte binary output variables to hold
the lengths of the returned object names.

ssAuthListObjects

Chapter 15. Function Descriptions 229

object_names_returned
(output,INT,4) is a signed four-byte binary output variable to hold the actual number of object names
matching the supplied key.

Usage Notes

1. This function returns the names of the objects belonging to class class_id and matching key
match_key.

2. The key expressed in match_key is expressed according to the CMS Application Multitasking syntax for
IPC and event match keys.

3. If the actual number of objects selected by match_key is greater than object_names_expected, then
the actual number of objects selected is returned in object_names_returned, as many object names as
will fit are filled into the output arrays, and a warning return and reason code are produced.

4. If an object name does not fit into the buffer described by its pair of elements from the
object_name_buffer_pointers and object_name_buffer_sizes arrays, then the actual length of the
object name is returned in the corresponding element of the object_name_lengths, as much of the
object name as will fit is returned in the object name buffer, and a warning return and reason code are
produced.

5. If both of the above-mentioned warning conditions are encountered, the reason code will indicate that
more object names were available than would fit in the output arrays (in other words, the truncated
object name condition will not be visible through reason code).

6. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthListObjects completed successfully

ss_aut_rc_error ss_aut_re_bad_count object_names_expected out of range

ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_warning ss_aut_re_too_many More object names were available than caller
expected

ss_aut_rc_warning ss_aut_re_trunc One or more returned object names was truncated

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthListObjects

230 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthModifyClass — Modify an Object Class

ssAuthModifyClass

retcode
reascode
class_id
operation_count
operation_array

Purpose

Adds operations to an existing object class.

Operands
ssAuthModifyClass

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthModifyClass.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthModifyClass.

class_id
(input,CHAR,8) is a character string holding the identifier of the class being modified.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the number of operations to be added
to the class.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the operations to be added to
the class.

Usage Notes

1. Use this function when it becomes necessary to define one or more new operations on a class (and
therefore on all objects belonging to it).

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthModifyClass completed successfully

ss_aut_rc_error ss_aut_re_bad_count operation_count out of range

ss_aut_rc_error ss_aut_re_no_class Class does not exist

ss_aut_rc_error ss_aut_re_too_many Operation limit on class would be exceeded

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ssAuthModifyClass

Chapter 15. Function Descriptions 231

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthModifyClass

232 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssAuthPermitUser — Permit a User

ssAuthPermitUser

retcode
reascode
user_name
user_name_length
object_name
object_name_length
use_arrays
operation_count
operation_array
operation_qualifiers
update_results

Purpose

Installs, modifies, or deletes a rule in the rule base.

Operands
ssAuthPermitUser

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthPermitUser.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthPermitUser.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of user_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

use_arrays
(input,INT,4) is a signed four-byte binary input variable holding a flag indicating how the operation
arrays should be applied to the rule.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the length of the operation_array,
operation_qualifiers and update_results arrays.

operation_array
(input,CHAR,4*operation_count) is an array of character strings holding the operations being edited.

operation_qualifiers
(input,INT,4*operation_count) is an array of signed four-byte binary input variables holding the
interpretation rules for the corresponding elements of operation_array.

ssAuthPermitUser

Chapter 15. Function Descriptions 233

update_results
(output,INT,4*operation_count) is an array of signed four-byte binary output variables to hold the
results of applying the changes requested in the corresponding elements of the operation_array and
operation_qualifier arrays.

Usage Notes

1. These values are recognized in use_arrays:
ss_aut_add_all

First add all operations defined on the object to the user's rule for the object, then use the
operation arrays to further update the user's rule

ss_aut_delete_all
First completely delete the current rule, then use the operation arrays to construct a new rule

ss_aut_use_arrays
Just update the current rule, using the operation arrays

2. These items are recognized in operation_qualifiers:
ss_aut_add_operation

Add the corresponding operation in operation_array
ss_aut_remove_operation

Remove the corresponding operation in operation_array
3. These items are filled into update_results:

ss_aut_op_not_defined
Operation is not defined on class to which object belongs

ss_aut_op_permitted
Operation is now permitted

ss_aut_op_not_permitted
Operation is now not permitted

ss_aut_no_change
Requested update did not change user's rule for object

4. To completely remove a rule, use ss_aut_delete_all and operation_count=0.
5. To grant "blanket" access to an object, use ss_aut_add_all and operation_count=0.
6. To grant all authorities except ones you explicitly wish to exclude, use ss_aut_add_all followed by an

operation array naming the authorities you wish to exclude, each entry being qualified by
ss_aut_remove_operation.

7. To "edit" an existing rule, use ss_aut_use_arrays and operation arrays containing the changes you wish
to apply.

8. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthPermitUser completed successfully

ss_aut_rc_warning ss_aut_re_bad_op One or more of the elements of operation_array is not
defined on this object's class

ss_aut_rc_error ss_aut_re_bad_user_lengt
h

user_name_length out of range

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_bad_use use_arrays contains an unrecognized value

ssAuthPermitUser

234 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_bad_count operation_count out of range

ss_aut_rc_error ss_aut_re_bad_qual One or more of the elements of operation_qualifiers is
unrecognized

ss_aut_rc_error ss_aut_re_out_of_storage Not enough storage available

ss_aut_rc_error ss_aut_re_no_object Object does not exist

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthPermitUser

Chapter 15. Function Descriptions 235

ssAuthQueryObject — Query an Object

ssAuthQueryObject

retcode
reascode
object_name
object_name_length
class_id
userids_expected
userid_buffer_pointers
userid_buffer_sizes
userid_lengths
userids_returned

Purpose

Queries an object, returning the class to which it belongs and a list of the user IDs for which a rule exists
for the object.

Operands
ssAuthQueryObject

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthQueryObject.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthQueryObject.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

class_id
(output,CHAR,8) is a character string to hold the class to which the object belongs.

userids_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in the
userid_buffer_pointers, userid_buffer_sizes, and userid_lengths arrays.

userid_buffer_pointers
(input,POINTER,4*userids_expected) is an array of pointers to buffers to hold the returned user IDs.

userid_buffer_sizes
(input,INT,4*userids_expected) is an array of signed four-byte binary input variables holding the sizes
of the buffers pointed to by the elements of userid_buffer_pointers.

userid_lengths
(output,INT,4*userids_expected) is an array of signed four-byte binary output variables to hold the
lengths of the returned user IDs.

ssAuthQueryObject

236 z/VM: Reusable Server Kernel Prog. Guide & Ref.

userids_returned
(output,INT,4) is a signed four-byte binary output variable to hold the actual number of user IDs for
which a rule exists for the object.

Usage Notes

1. If the actual number of user IDs for which a rule exists is greater than userids_expected, then the
actual number of user IDs is returned in userids_returned, as many user IDs as will fit are filled into the
output arrays, and a warning return and reason code are produced.

2. If a user ID does not fit into the buffer described by the pair of elements from the
userid_buffer_pointers and userid_buffer_sizes arrays, then the actual length of the user ID is returned
in the corresponding element of the userid_lengths arrays, as much of the user ID as will fit is returned
in the buffer, and a warning return and reason code are produced.

3. If both of the above-mentioned warning conditions are encountered, the reason code will indicate that
more user IDs were available than would fit in the output arrays (in other words, the truncated user ID
condition will not be visible through reason code).

4. To determine the specific access rights afforded to one of the returned user IDs, use
ssAuthQueryRule.

5. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthQueryObject completed successfully

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_bad_count userids_expected out of range

ss_aut_rc_error ss_aut_re_no_object Object does not exist

ss_aut_rc_warning ss_aut_re_too_many Some user IDs did not fit into the output arrays

ss_aut_rc_warning ss_aut_re_trunc One or more returned user IDs was truncated

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthQueryObject

Chapter 15. Function Descriptions 237

ssAuthQueryRule — Query a Rule

ssAuthQueryRule

retcode
reascode
user_name
user_name_length
object_name
object_name_length
operations_expected
operation_array
operations_returned

Purpose

Queries the operations a user can perform against an object.

Operands
ssAuthQueryRule

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthQueryRule.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthQueryRule.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of user_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

operations_expected
(input,INT,4) is a signed four-byte binary input variable holding the size of operation_array.

operation_array
(output,CHAR,4*operations_expected) is an array of character strings to hold the operations the user
is permitted to perform.

operations_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of operations filled into
operation_array.

Usage Notes

1. If the actual number of operations permitted is greater than operations_expected, then the actual
number of operations permitted is returned in operations_returned, as many operations as will fit are
filled into operation_array, and a warning return and reason code are produced.

ssAuthQueryRule

238 z/VM: Reusable Server Kernel Prog. Guide & Ref.

2. If the named user is not permitted any operations against the named object, then a successful return
and reason code are generated and operations_returned is set to zero.

3. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthQueryRule completed successfully

ss_aut_rc_error ss_aut_re_bad_user_lengt
h

user_name_length out of range

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_bad_count operations_expected out of range

ss_aut_rc_error ss_aut_re_no_object Object does not exist

ss_aut_rc_warning ss_aut_re_too_many Some operations did not fit into operation_array

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthQueryRule

Chapter 15. Function Descriptions 239

ssAuthReload — Reload Authorization Data

ssAuthReload

retcode
reascode

Purpose

Resets the internal authorization engine.

Operands
ssAuthReload

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssAuthReload.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthReload.

Usage Notes

This function is intended for use when an I/O error of some kind shuts off the authorization API (causes
ss_aut_re_prev_io_error to be returned). It performs these functions:

• Closes all authorization data files, ignoring close errors.

Note: For the SFS, the work unit was rolled back at the time the error was detected. For other
repositories, the log file and update algorithms provide appropriate recovery mechanisms.

• Returns its CMS work unit ID, if applicable.
• Flushes all caches.
• Gets a new CMS work unit ID, if applicable.
• Reopens the data files.
• If applicable, attempts to recover the authorization database (processes log file and realigns the two

copies).
• Reloads the authorization index into storage.

If all these operations were successful, the authorization API is again available for use.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthReload completed successfully

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvw_fail Condition variable wait failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_gwu_fail DMSGETWU (Get Work Unit ID) failed

ssAuthReload

240 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Return Code Reason Code Meaning

ss_aut_rc_error ss_aut_re_open_fail Unable to open authorization files

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_write_fail Unable to write authorization files

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthReload

Chapter 15. Function Descriptions 241

ssAuthTestOperations — Test Operations

ssAuthTestOperations

retcode
reascode
user_name
user_name_length
object_name
object_name_length
operation_count
desired_operations
test_results

Purpose

Tests a given user's rights to perform a set of actions against a given object.

Operands
ssAuthTestOperations

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssAuthTestOperations.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssAuthTestOperations.

user_name
(input,CHAR,user_name_length) is a character string holding the name of the user.

user_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of us/r_name.

object_name
(input,CHAR,object_name_length) is a character string holding the name of the object.

object_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of object_name.

operation_count
(input,INT,4) is a signed four-byte binary input variable holding the length of the desired_operations
and test_results arrays.

desired_operations
(input,CHAR,4*operation_count) is an array of character strings holding the operations to be tested.

test_results
(output,INT,4*operation_count) is an array of signed four-byte binary output variables to hold the
results of the tests.

Usage Notes

1. On successful completion, each element of test_results will contain one of these values:
ss_aut_op_permitted

Operation is permitted

ssAuthTestOperations

242 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ss_aut_op_not_permitted
Operation is not permitted

ss_aut_op_not_defined
Operation is not defined

2. For more information on the naming conventions and other limits for the authorization API, see
“Naming Conventions and Other Limits” on page 36.

Messages and Return Codes

Return Code Reason Code Meaning

ss_aut_rc_success ss_aut_re_success ssAuthTestOperations completed successfully

ss_aut_rc_error ss_aut_re_bad_user_lengt
h

user_name_length out of range

ss_aut_rc_error ss_aut_re_bad_obj_length object_name_length out of range

ss_aut_rc_error ss_aut_re_bad_count operation_count out of range

ss_aut_rc_error ss_aut_re_no_object Object does not exist

ss_aut_rc_error ss_aut_re_maq_fail Mutex acquisition failed

ss_aut_rc_error ss_aut_re_cvs_fail Condition variable signal failed

ss_aut_rc_error ss_aut_re_mr_fail Mutex release failed

ss_aut_rc_error ss_aut_re_read_fail Unable to read authorization files

ss_aut_rc_error ss_aut_re_prev_io_error API disabled due to I/O error on previous call

ss_aut_rc_error ss_aut_re_prev_sync_error API disabled due to synchronization error on previous
call

Programming Language Bindings

Language Language Binding File

Assembler SSASMAUT MACRO

PL/X SSPLXAUT COPY

ssAuthTestOperations

Chapter 15. Function Descriptions 243

ssCacheCreate — Create Cache

ssCacheCreate

retcode
reascode
cache_name
cache_size
cache_alet

Purpose

Creates a file cache, using a VM Data Space.

Operands
ssCacheCreate

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheCreate.

cache_name
(input,CHAR,8) is a character string holding the name of the new file cache.

cache_size
(input,INT,4) is a signed four-byte binary input variable holding the size of the new file cache.

cache_ALET
(output,INT,4) is a signed four-byte binary output variable to hold the returned ALET.

Usage Notes

1. The cache name is used directly in a call to ssMemoryCreateDS and therefore must not conflict with
any other subpool names.

2. The cache size is to be given in pages. It must be greater than 0 and less than or equal to 524288. The
actual size of the created cache is rounded up to the next 16-page boundary.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheCreate completed successfully

ss_fil_rc_error ss_fil_re_bad_size cache_size is out of range

ss_fil_rc_error ss_fil_re_cache_exists Cache already exists

ss_fil_rc_error ss_fil_re_out_of_storage Out of storage

ss_fil_rc_error ss_fil_re_dscr_fail Creation of data space failed

ssCacheCreate

244 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Programming Language Bindings

Language Language Binding File

Assembler SSASMCAC MACRO

PL/X SSPLXCAC COPY

ssCacheCreate

Chapter 15. Function Descriptions 245

ssCacheDelete — Delete Cache

ssCacheDelete

retcode
reascode
cache_name

Purpose

Deletes a file cache.

Operands
ssCacheDelete

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheDelete.

cache_name
(input,CHAR,8) is a character string holding the name of the file cache to be deleted.

Usage Notes

1. Once deletion starts, the server kernel will not honor any more calls to ssCacheFileOpen for this
cache.

2. The deletion does not complete until the last open file in this cache is closed.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheDelete completed successfully

ss_fil_rc_error ss_fil_re_cache_not_found Cache not found

Programming Language Bindings

Language Language Binding File

Assembler SSASMCAC MACRO

PL/X SSPLXCAC COPY

ssCacheDelete

246 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssCacheFileClose — Close Cached File

ssCacheFileClose

retcode
reascode
cache_name
file_token

Purpose

Close a cached file.

Operands
ssCacheFileClose

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheFileClose.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheFileClose.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the file being closed is
located.

file_token
(input,CHAR,8) is a character string holding the token of the file being closed.

Usage Notes

If the file being closed was previously marked as stale, it is dropped from the cache.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheFileClose completed successfully

ss_fil_rc_error ss_fil_re_cache_not_found Cache does not exist

ss_fil_rc_error ss_fil_re_bad_token File token is bad

Programming Language Bindings

Language Language Binding File

Assembler SSASMCAC MACRO

PL/X SSPLXCAC COPY

ssCacheFileClose

Chapter 15. Function Descriptions 247

ssCacheFileOpen — Open Cached File

ssCacheFileOpen

retcode
reascode
cache_name
file_name
file_name_length
ESM_data
ESM_data_length
flag_count
flag_names
flag_values
file_token
cache_ALET
file_address
file_size
file_stamp

Purpose

Makes a file ready for reading from a cache, loading it from minidisk, SFS, or BFS if necessary.

Operands
ssCacheFileOpen

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheFileOpen.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheFileOpen.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the file is to be placed.

file_name
(input,CHAR,file_name_length) is a character string holding the name of the file to be cached.

file_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of file_name.

ESM_data
(input,CHAR,ESM_data_length) is a character string holding ESM data to be passed to DMSOPEN.

ESM_data_length
(input,INT,4) is a signed four-byte binary input variable holding the length of ESM_data.

flag_count
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in each of the
the flag_names and flag_values arrays.

flag_names
(input,INT,4*flag_count) is an array of signed four-byte binary input variables holding flag names.

ssCacheFileOpen

248 z/VM: Reusable Server Kernel Prog. Guide & Ref.

flag_values
(input,INT,4*flag_count) is an array of signed four-byte binary input variables holding flag values.

file_token
(output,CHAR,8) is a character string to hold the returned file token.

cache_ALET
(output,INT,4) is a signed four-byte binary output variable to hold the ALET of the cache data space.

file_address
(output,POINTER,4) is a signed four-byte binary output variable to hold the address of the file in the
data space.

file_size
(output,INT,4) is a signed four-byte binary output variable to hold the size of the cached file in bytes.

file_stamp
(output,CHAR,32) is a character string to hold the returned last update date and time of the file.

Usage Notes

1. Parameters file_name and file_name_length together describe a string which will be passed
unchanged to either CSL routine DMSOPEN or CSL routine BPX1OPN as the name of the file to be
opened. The CSL routine the server kernel chooses depends on the values you specify in the flag
arrays. Be aware that case is significant in file names.

2. The server kernel will pass parameters ESM_data and ESM_data_length unchanged to DMSOPEN if it
ends up calling DMSOPEN to find the file. The server kernel will ignore the ESM data if it ends up
calling BPX1OPN.

3. Parameter arrays flag_names and flag_values together contain integers specifying various controls on
how the file is to be cached. These integers and their meanings are described in Table 46 on page
249.

Table 46. Flags for ssCacheFileOpen

Flag Name Function Acceptable Values Default Value

ss_cac_ofn_bfs Corresponding value
tells the server kernel
whether to use
BPX1OPN to open the
file.

Specify ss_cac_ofv_yes
for BPX1OPN or
ss_cac_ofv_no for
DMSOPEN.

If you do not mention this flag in your flag arrays,
the server kernel will try to guess whether to use
DMSOPEN or BPX1OPN based on the composition of
the filename string you supply. If the filename you
supply contains a blank (X'40'), the server kernel
will try DMSOPEN. If it contains no blanks, the
server kernel will try BPX1OPN.

ss_cac_ofn_xlate Corresponding value
nominates a translation
table previously
identified through
ssCacheXlTabSet.

Any table ID, or zero to
bypass translations.

Zero

ss_cac_ofn_preserve_dolr Corresponding value
specifies whether the
file's date of last
reference should be
preserved (that is, not
updated). Ignored if the
server kernel ends up
calling BPX1OPN.

Specify ss_cac_ofv_yes
or ss_cac_ofv_no.

ss_cac_ofv_no

ssCacheFileOpen

Chapter 15. Function Descriptions 249

Table 46. Flags for ssCacheFileOpen (continued)

Flag Name Function Acceptable Values Default Value

ss_cac_ofn_recmethod_fs Corresponding value
describes how the
server kernel should
expect the records to be
delimited in the file it is
reading from disk.

• X'00xxxxxx' - The
file's records are
delimited according
to the structure
recorded by the CMS
file system (F1 for
BFS files).

• X'01nnssss' - The
file's records are
delimited by an nn-
byte suffix appearing
in the file's data after
each record. Set nn
equal to X'00', X'01',
or X'02'. The suffix
bytes to be used are
ssss. If nn is X'01' the
second suffix byte is
ignored.

• X'02nnxxxx' - The
file's records are
delimited by an nn-
byte length prefix
appearing in the file's
data before each
record. The length
prefix does not
include the length of
the prefix itself. Set
nn equal to X'02' or
X'04'.

X'00000000'

ss_cac_ofn_recmethod_cache Corresponding value
describes how the
server kernel should
delimit records in the
cached file.

• X'01nnssss' - Put an
nn-byte suffix on
each record. Set nn
equal to X'00', X'01',
or X'02'. The suffix
bytes to be used are
ssss. If nn is X'01' the
second suffix byte is
ignored.

• X'02nnxxxx' - Prefix
each record with a
nn-byte length field.
The length prefix
does not include the
length of the prefix
itself. Set nn equal to
X'02' or X'04'.

X'01000000'

4. Use the value supplied in output file_token in calls to ssCacheFileRead and ssCacheFileClose.
5. If the server kernel was able to load the file contiguously in data space storage, then it returns the

cache's ALET in cache_ALET and the address of the file buffer in file_address. This lets the server
know that it can use AR mode to access the file data directly if it chooses. If the file was not loaded
contiguously, cache_ALET and file_address are returned as zero.

6. The number of bytes cached -- that is, the size of the transformed file, in bytes -- is returned in
file_size.

7. If the data space is too full to contain the file, the server kernel throws away cached files in LRU
fashion, skipping those files that are still open, until enough storage is freed to hold the new file. If
the server kernel removes all files eligible for removal but the new file still will not fit, an error is
returned.

8. If there are stale versions of the new file still in the cache, and those stale versions are no longer
open, they are discarded prior to loading the new file. Stale, still-open versions are marked as stale
and thrown out when they are finally closed.

9. A file's date of last reference is never updated on a cache hit, no matter what the caller requested.

ssCacheFileOpen

250 z/VM: Reusable Server Kernel Prog. Guide & Ref.

10. Cache contents are indexed by file name as passed by the caller. Depending on accessed file modes,
default filepools, SFS aliasing, and default filespaces, several different file names might actually refer
to the same physical file; the server kernel cannot discern that these names all refer to the same file.
Callers need to be aware of this phenomenon and might need to perform some file name resolution
prior to calling ssCacheFileOpen in order to keep unnecessary duplicates out of a file cache.

Similarly, if the server is referring to files using file mode letters and is switching the accessed file
mode set through the ACCESS and RELEASE commands, the same name might refer to two different
files at two different moments in time. The cache will be unharmed by this as long as those two
different files have different update timestamps, but if two such files have the same update
timestamp the cache will fail to reload when a reload truly is required. The server author is
responsible for avoiding this situation.

11. Files with record formats other than V or F (as returned by DMSEXIST) cannot be cached.
12. Files with names longer than 256 bytes cannot be cached.
13. If you requested suffixing or prefixing for ss_cac_ofn_recmethod_fs, the records encountered in the

file must all be less than or equal to 65,535 bytes in length.
14. On VM/ESA 2.3.0 and later, file_stamp is always returned in ISO format. On earlier VM/ESA releases,

if the cached file was loaded from SFS or minidisk the stamp is returned in ISO format, but if the
cached file was loaded from BFS the first four bytes of the returned stamp are Posix time and the
remainder of the stamp is blank (X'40').

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheFileOpen completed successfully

ss_fil_rc_error ss_fil_re_cache_not_found Cache does not exist

ss_fil_rc_error ss_fil_re_bad_length Bad value in file_name_length

ss_fil_rc_error ss_fil_re_bad_count Bad value in flag_count

ss_fil_rc_error ss_fil_re_bad_esmdl Bad value in ESM_data_length

ss_fil_rc_error ss_fil_re_bad_fname Bad value in flag_names

ss_fil_rc_error ss_fil_re_bad_fval Bad value in flag_values

ss_fil_rc_error ss_fil_re_exist_fail Call to DMSEXIST failed

ss_fil_rc_error ss_fil_re_file_not_found DMSOPEN could not find file

ss_fil_rc_error ss_fil_re_bad_recfm Record format is neither F nor V

Programming Language Bindings

Language Language Binding File

Assembler SSASMCAC MACRO

PL/X SSPLXCAC COPY

ssCacheFileOpen

Chapter 15. Function Descriptions 251

ssCacheFileRead — Read Cached File

ssCacheFileRead

retcode
reascode
cache_name
file_token
byte_offset
byte_count
buffer
bytes_read

Purpose

Reads data from a cached file.

Operands
ssCacheFileRead

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheFileRead.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheFileRead.

cache_name
(input,CHAR,8) is a character string holding the name of the cache in which the file is located.

file_token
(input,CHAR,8) is a character string holding the token of the file to be read.

byte_offset
(input,INT,4) is the zero-origin offset to the first byte of the file to be read.

byte_count
(input,INT,4) is the number of bytes to be read.

buffer
(output,CHAR,byte_count) is a character string to hold the bytes read from the file.

bytes_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of bytes read from the
file.

Usage Notes

1. The server kernel supports multiple simultaneous read operations against a given file.
2. If not enough bytes are available to satisfy the call, as many bytes as are available are returned in the

output buffer and success is returned.
3. If the supplied offset is less than zero or is past the end of the file, an error is returned.

ssCacheFileRead

252 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheFileRead completed successfully

ss_fil_rc_error ss_fil_re_cache_not_found Cache does not exist

ss_fil_rc_error ss_fil_re_bad_token Bad file token

ss_fil_rc_error ss_fil_re_bad_offset Bad file offset

ss_fil_rc_error ss_fil_re_bad_length Bad byte count

Programming Language Bindings

Language Language Binding File

Assembler SSASMCAC MACRO

PL/X SSPLXCAC COPY

ssCacheFileRead

Chapter 15. Function Descriptions 253

ssCacheQuery — Query Cache

ssCacheQuery

retcode
reascode
cache_name
files_cached
cache_size
in_use
open_count
hit_count

Purpose

Returns basic statistics about a cache's operation.

Operands
ssCacheQuery

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheQuery.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheQuery.

cache_name
(input,CHAR,8) is a character string holding the name of the file cache to be queried.

files_cached
(output,INT,4) is a signed four-byte binary output variable to hold the number of files currently
resident in the cache.

cache_size
(output,INT,4) is a signed four-byte binary output variable to hold the size of the cache.

in_use
(output,INT,4) is a signed four-byte binary output variable to hold the amount of cache space
currently in use.

open_count
(output,INT,4) is a signed four-byte binary output variable to hold the number of file opens processed
through this cache.

hit_count
(output,INT,4) is a signed four-byte binary output variable to hold the number of times a file open was
satisfied without having to call CMS to read the file from disk.

Usage Notes

Parameters cache_size and in_use are returned in bytes.

ssCacheQuery

254 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheQuery completed successfully

ss_fil_rc_error ss_fil_re_cache_not_found Cache not found

Programming Language Bindings

Language Language Binding File

Assembler SSASMCAC MACRO

PL/X SSPLXCAC COPY

ssCacheQuery

Chapter 15. Function Descriptions 255

ssCacheXlTabSet — Set Translation Table

ssCacheXlTabSet

retcode
reascode
table_id
table

Purpose

Sets translation table for use when reading files.

Operands
ssCacheXlTabSet

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssCacheXlTabSet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssCacheXlTabSet.

table_id
(input,INT,4) is a signed four-byte binary input variable holding the identifier of the new translation
table.

table
(input,CHAR,256) is a character string holding the translation table itself.

Usage Notes

1. Parameter table_id can be any four-byte integer except zero.
2. If table_id was previously in use, the previous table is replaced and a warning is returned.

Messages and Return Codes

Return Code Reason Code Meaning

ss_fil_rc_success ss_fil_re_success ssCacheXlTabSet completed successfully

ss_fil_rc_warning ss_fil_re_table_replaced Table was replaced

ss_fil_rc_error ss_fil_re_bad_table_id Table ID cannot be zero

ss_fil_rc_error ss_fil_re_out_of_storage Out of storage

Programming Language Bindings

Language Language Binding File

Assembler SSASMCAC MACRO

ssCacheXlTabSet

256 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Language Language Binding File

PL/X SSPLXCAC COPY

ssCacheXlTabSet

Chapter 15. Function Descriptions 257

ssClientDataGet — Get Client Data

ssClientDataGet

retcode
reascode
caller_type
C-block_address
get_method
buffer_alet
data_buffer
amount_wanted
amount_given
amount_remaining

Purpose

Obtains or discards data from client data buffers.

Operands
ssClientDataGet

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDataGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDataGet.

caller_type
(input,INT,4) is a signed four-byte binary input variable holding an indicator of the kind of caller
(instance or line driver).

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

get_method
(input,INT,4) is a signed four-byte binary input variable holding an indicator of the kind of retrieval
operation to be performed.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when accessing
data_buffer.

data_buffer
(input,CHAR,amount_wanted) is a character string into which the retrieved data is to be placed.

amount_wanted
(input,INT,4) is a signed four-byte binary input variable holding the number of bytes of data to be
retrieved or discarded.

amount_given
(output,INT,4) is a signed four-byte binary output variable to hold the number of bytes actually
returned or discarded.

ssClientDataGet

258 z/VM: Reusable Server Kernel Prog. Guide & Ref.

amount_remaining
(output,INT,4) is a signed four-byte binary output variable to hold the number of bytes remaining in
the client's buffers after the caller's operation completed.

Usage Notes

1. The caller_type should be set to one of these values:
ss_cli_iam_instance

The caller is an instance thread.
ss_cli_iam_linedriver

The caller is a line driver.
2. The get_method should be set to one of these values:

ss_cli_method_peek
Fill the caller's buffer but do not dequeue and discard it just yet from the reusable server kernel's
internal buffers.

ss_cli_method_read
Fill the caller's buffer and dequeue and discard it from the reusable server kernel's internal
buffers.

ss_cli_method_discard
Dequeue and discard the data from the reusable server kernel's internal buffers but do not fill it
into the caller's buffer.

3. Setting amount_wanted to -1 means "perform this operation on all of the data currently buffered".
4. If the caller asks for more data than is currently buffered, all of the currently available data is returned,

amount_given is filled in appropriately, and no error is returned.
5. If the line driver you are using is record-oriented, then the data stream you read from the client will be

organized into records, each record prefixed by a four-byte length. For more information on the
description of record-oriented line drivers, see Table 8 on page 12.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataGet completed successfully

ss_cli_rc_error ss_cli_re_bad_iam caller_type contains unrecognized value

ss_cli_rc_error ss_cli_re_bad_method get_method contains unrecognized value

ss_cli_rc_error ss_cli_re_out_of_range amount_wanted contains illegal value

Programming Language Bindings

Language Language Binding File

Assembler SSASMCLI MACRO

PL/X SSPLXCLI COPY

ssClientDataGet

Chapter 15. Function Descriptions 259

ssClientDataInit — Initialize Client Data Buffers

ssClientDataInit

retcode
reascode
C-block_address
subpool_name

Purpose

Initializes client data buffer structures.

Operands
ssClientDataInit

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDataInit.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDataInit.

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

subpool_name
(input,CHARACTER,8) is a character string holding the name of the subpool from which these client
buffers should be allocated.

Usage Notes

1. This routine is meant for use by a line driver that is preparing to handle a new client. As part of
initializing the C-block that describes the new client, the line driver should call ssClientDataInit to
ensure that the structures relating to buffering the client's data are initialized.

2. Subpool subpool_name must not be a subpool that refers to a VM Data Space.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataInit completed successfully

Programming Language Bindings

Language Language Binding File

Assembler SSASMCLI MACRO

PL/X SSPLXCLI COPY

ssClientDataInit

260 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssClientDataPut — Put Client Data

ssClientDataPut

retcode
reascode
caller_type
C-block_address
buffer_alet
data_buffer
amount_of_data
new_amount_buffered

Purpose

Writes data to client data buffers.

Operands
ssClientDataPut

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDataPut.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDataPut.

caller_type
(input,INT,4) is a signed four-byte binary input variable holding an indicator of the kind of caller
(instance or line driver).

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when accessing
data_buffer.

data_buffer
(input,CHAR,amount_of_data) is a character string containing the data to be written.

amount_of_data
(input,INT,4) is a signed four-byte binary input variable holding the length of data_buffer.

new_amount_buffered
(output,INT,4) is a signed four-byte binary output variable to hold the new amount of data in the client
buffer.

Usage Notes

1. caller_type should be set to one of these values:
ss_cli_iam_instance

The caller is an instance thread.

ssClientDataPut

Chapter 15. Function Descriptions 261

ss_cli_iam_linedriver
The caller is a line driver.

2. ssClientDataPut maintains the bytes in and bytes out fields of the C-block. A line driver should not
attempt to maintain these itself.

3. ssClientDataPut exerts flow control on its caller. When the caller's operation results in either more
than 16 MB being queued for the client or more than 128 distinct buffers being queued for the client,
ssClientDataPut waits until the corresponding line driver empties the buffers before returning to
the caller. The buffer will be emptied only if the server has sent the appropriate IPC message to its line
driver; ssClientDataPut does not send any IPC messages on behalf of its caller.

4. If the line driver you are using is record-oriented, then the data stream you build for the client must be
organized into records, each record prefixed by a four-byte length. For more information on the
description of record-oriented line drivers, see Table 8 on page 12.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataPut completed successfully

ss_cli_rc_error ss_cli_re_bad_iam caller_type contains unrecognized value

ss_cli_rc_error ss_cli_re_out_of_range amount_of_data contains illegal value

ss_cli_rc_error ss_cli_re_out_of_storage Not enough free storage to buffer this data

Programming Language Bindings

Language Language Binding File

Assembler SSASMCLI MACRO

PL/X SSPLXCLI COPY

ssClientDataPut

262 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssClientDataTerm — Terminate Client Data Buffers

ssClientDataTerm

retcode
reascode
C-block_address

Purpose

Terminates client data buffer structures.

Operands
ssClientDataTerm

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssClientDataTerm.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssClientDataTerm.

C-block_address
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block for
the client in question.

Usage Notes

This routine is meant for use by a line driver that is ending its handling of a client. As part of its
termination processing, the line driver should call ssClientDataTerm so that the reusable server kernel
can clean up its handling of buffered client data.

Messages and Return Codes

Return Code Reason Code Meaning

ss_cli_rc_success ss_cli_re_success ssClientDataTerm completed successfully

Programming Language Bindings

Language Language Binding File

Assembler SSASMCLI MACRO

PL/X SSPLXCLI COPY

ssClientDataTerm

Chapter 15. Function Descriptions 263

ssEnrollCommit — Commit Enrollment Set

ssEnrollCommit

retcode
reascode
set_name

Purpose

Commits changes to an open enrollment set.

Operands
ssEnrollCommit

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollCommit.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollCommit.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be committed.

Usage Notes

1. This entry point commits the SFS file holding the named enrollment set. The enrollment set remains
loaded and available for other transactions.

2. If the commit fails, the appropriate action is to call ssEnrollDrop to drop the set, using drop type
ss_enr_drop_rollback.

3. An attempt to commit a transient enrollment set will return a warning. No other action is taken.

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollCommit completed successfully

ss_enr_rc_error ss_enr_re_db_not_found Named enrollment set not found

ss_enr_rc_warning ss_enr_re_not_disk Named enrollment set is transient

ss_enr_rc_error ss_enr_re_comm_fail Call to DMSCOMM failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

ssEnrollCommit

264 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Language Language Binding File

PL/X SSPLXENR COPY

ssEnrollCommit

Chapter 15. Function Descriptions 265

ssEnrollDrop — Drop Enrollment Set

ssEnrollDrop

retcode
reascode
set_name
drop_type

Purpose

Drops (closes, unloads) an enrollment set.

Operands
ssEnrollDrop

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollDrop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollDrop.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be dropped.

drop_type
(input,INT,4) is a signed four-byte binary input variable holding a value indicative of the kind of drop to
be performed:
ss_enr_drop_commit

Commit changes
ss_enr_drop_rollback

Roll back changes

Usage Notes

1. This entry point closes the SFS file holding the named enrollment set, either rolling back or committing
the changes, according to the value of parameter drop_type. It also deletes the data space and
performs other cleanup operations.

2. If ss_enr_drop_commit is requested and the commit fails, an error will be returned and no other action
will be taken. The appropriate recovery action is to attempt a rollback drop.

3. An attempt to commit a transient enrollment set will return a warning and the drop will proceed.

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollDrop completed successfully

ss_enr_rc_error ss_enr_re_bad_drop_type Unrecognized drop type

ss_enr_rc_error ss_enr_re_db_not_found Named enrollment set not found

ssEnrollDrop

266 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Return Code Reason Code Meaning

ss_enr_rc_warning ss_enr_re_not_disk Named enrollment set is transient

ss_enr_rc_error ss_enr_re_close_fail Call to DMSCLOSE failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

PL/X SSPLXENR COPY

ssEnrollDrop

Chapter 15. Function Descriptions 267

ssEnrollList — List Enrollment Sets

ssEnrollList

retcode
reascode
C-block_pointer

Purpose

Produces a summary list of the loaded enrollment sets.

Operands
ssEnrollList

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollList.

C-block_pointer
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block
representing the client to whom the summary list should be sent.

Usage Notes

1. The reusable server kernel writes the summary list to the client represented by C-block_pointer, using
routine ssClientDataPut.

2. If the programmer wishes to capture the output of ssEnrollList for his own purposes, he can
allocate storage to represent a C-block, initialize the C-block using routine ssClientDataInit, and
then call routine ssEnrollList. When ssEnrollList returns, the programmer can call
ssClientDataGet to retrieve the response. After the response is decoded, he should deallocate the
C-block. Note that the response is record-oriented.

3. The form of the output is:

Name Pages Entries InUse D K
---- ----- ------- ----- - -
test 256 1 1 0 d

The columns are:
Name

The name of the enrollment set
Pages

The size of the data space, in pages
Entries

The number of records in the enrollment set
InUse

The number of pages of data space storage being used to hold records

ssEnrollList

268 z/VM: Reusable Server Kernel Prog. Guide & Ref.

D
"Dirty" bit - if 1, set needs to be committed

K
Kind of set
d

On-disk (permanent)
m

In-memory (transient)

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollList completed successfully

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

PL/X SSPLXENR COPY

ssEnrollList

Chapter 15. Function Descriptions 269

ssEnrollLoad — Load Enrollment Set

ssEnrollLoad

retcode
reascode
set_name
set_kind
dataspace_size
file_name
file_name_length

Purpose

Loads an enrollment set from the Shared File System, or initializes an empty transient enrollment set.

Operands
ssEnrollLoad

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollLoad.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollLoad.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be loaded.

set_kind
(input,INT,4) is a signed four-byte binary input variable holding a value that indicates whether the
enrollment set is permanent or transient, as follows:
ss_enr_kind_memory

transient set
ss_enr_kind_disk

permanent set
dataspace_size

(input,INT,4) is a signed four-byte binary input variable holding the size of the dataspace.
file_name

(input,CHAR,file_name_length) is a character string holding the name of the SFS file containing the
enrollment set.

file_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of file_name.

Usage Notes

1. The name supplied in parameter set_name is used unchanged as a subpool name in a call to
ssMemoryCreateDS. The server author must ensure that this name does not collide with any subpool
names he might be using for other purposes.

ssEnrollLoad

270 z/VM: Reusable Server Kernel Prog. Guide & Ref.

2. The caller can use parameter dataspace_size to influence the size of the created data space. Express
the size in pages. The reusable server kernel rounds the suggested size up to the next 16-page
boundary before using it further. To refrain from influencing the data space size, specify a size of zero.

3. When it creates the data space, the reusable server kernel uses the larger of the following two
parameters as the size of the space:

• The number of records in the SFS file multiplied by the LRECL of the SFS file, multiplied by 1.5
• The size requested by the caller in the dataspace_size parameter

If the larger of these two sizes is less than 1 MB, then the reusable server kernel uses 1 MB (256
pages) instead.

4. Parameter file_name accepts any syntax acceptable to CSL routine DMSOPEN. This includes NAMEDEFs.
5. The file nominated by file_name must reside in the Shared File System. If the file does not (or would

not) reside in the Shared File System, an error is returned and the enrollment set is not loaded.
6. The virtual machine in which the server program is running must have write authority to the file

nominated by file_name.
7. If the file nominated by file_name does not exist, it is created and a warning is returned.
8. The file nominated by file_name is opened on its own work unit.
9. If a transient enrollment set is being loaded, no CMS file I/O takes place and no work unit is gotten.

The data space is created, initialized as empty, and made ready to hold records.

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollLoad completed successfully

ss_enr_rc_error ss_enr_re_bad_kind Parameter set_kind contains an unrecognized value

ss_enr_rc_error ss_enr_re_bad_length Parameter file_name_length contains an unrecognized
value

ss_enr_rc_error ss_enr_re_no_storage Insufficient storage is available

ss_enr_rc_error ss_enr_re_db_exists Set set_name already exists

ss_enr_rc_error ss_enr_re_dscr_fail Attempt to create data space failed

ss_enr_rc_error ss_enr_re_gwu_fail Attempt to get work unit failed

ss_enr_rc_error ss_enr_re_open_fail Attempt to open file failed

ss_enr_rc_error ss_enr_re_not_sfs File is not SFS-resident

ss_enr_rc_error ss_enr_re_not_v File is not V-format

ss_enr_rc_error ss_enr_re_point_fail Attempt to move file pointers failed

ss_enr_rc_error ss_enr_re_read_fail Attempt to read SFS file failed

ss_enr_rc_warning ss_enr_re_new_file SFS file not found - new permanent enrollment set
created

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

PL/X SSPLXENR COPY

ssEnrollLoad

Chapter 15. Function Descriptions 271

ssEnrollRecordGet — Get Enrollment Record

ssEnrollRecordGet

retcode
reascode
set_name
key
buffer
buffer_size
data_length

Purpose

Retrieves a record from an enrollment set.

Operands
ssEnrollRecordGet

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordGet.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordGet.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be interrogated.

key
(input,CHAR,64) is a character string holding the key of the record to be retrieved.

buffer
(output,CHAR,buffer_size) is a character string buffer to hold the data of the retrieved record.

buffer_size
(input,INT,4) is a signed four-byte binary input variable holding the size of buffer.

data_length
(output,INT,4) is a signed four-byte binary output variable to hold the amount of data stored under
key key.

Usage Notes

1. Every byte of the key is significant. If your application's keys are, say, text strings, be sure to pad your
keys on the right to fill out the entire key field.

2. Case is significant in keys.
3. If the amount of data stored under key key will not fit in buffer, as much as will fit is returned, output

data_length is set to the actual size of the data, and a warning is returned. This lets the caller retry the
operation with a buffer large enough to hold all of the data.

4. If the record does not exist in set set_name, an error is returned.

ssEnrollRecordGet

272 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollRecordGet completed successfully

ss_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

ss_enr_rc_error ss_enr_re_rec_not_found No record matches key key

ss_enr_rc_warning ss_enr_re_truncated Record was found but truncated because buffer could
not contain all of it

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

PL/X SSPLXENR COPY

ssEnrollRecordGet

Chapter 15. Function Descriptions 273

ssEnrollRecordInsert — Insert Enrollment Record

ssEnrollRecordInsert

retcode
reascode
set_name
key
buffer
data_length
insert_type

Purpose

Inserts or replaces a record in an enrollment set.

Operands
ssEnrollRecordInsert

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordInsert.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordInsert.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be modified.

key
(input,CHAR,64) is a character string holding the key of the record to be inserted or replaced.

buffer
(output,CHAR,data_length) is a character string buffer holding the data to be associated with key.

buffer_size
(input,INT,4) is a signed four-byte binary input variable holding the size of buffer.

data_length
(output,INT,4) is a signed four-byte binary output variable to hold the amount of data stored under
key key.

insert_type
(input,INT,4) is a signed four-byte binary input variable to hold the kind of insertion being done:
ss_enr_insert_new

New record
ss_enr_insert_replace

Replacement record

Usage Notes

1. Every byte of the key is significant. If your application's keys are, say, text strings, be sure to pad your
keys on the right to fill out the entire key field.

2. Case is significant in keys.

ssEnrollRecordInsert

274 z/VM: Reusable Server Kernel Prog. Guide & Ref.

3. The differences between ss_enr_insert_new and ss_enr_insert_replace are:

• For _new, the reusable server kernel will fail the API call if the enrollment set already holds a record
bearing key key. Thus the programmer can use _new to guard against inadvertent replacements.

• For _replace, if the record bearing key key already exists, it is replaced and a warning is returned.
4. The change is not permanent until it is committed.
5. For permanent enrollment sets, the data cannot be more than 65,500 bytes long.
6. For transient enrollment sets, the data cannot be more than 16 MB long.

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollRecordInsert completed successfully

ss_enr_rc_error ss_enr_re_bad_method Parameter insert_type contains an unrecognized value

ss_enr_rc_error ss_enr_re_bad_length Parameter data_length contains an invalid value

ss_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

ss_enr_rc_error ss_enr_re_no_storage Insufficient storage to satisfy request

ss_enr_rc_error ss_enr_re_write_storage Write to SFS file failed

ss_enr_rc_warning ss_enr_re_rec_exists Record exists and was replaced

ss_enr_rc_error ss_enr_re_rec_exists Record exists and was not replaced

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

PL/X SSPLXENR COPY

ssEnrollRecordInsert

Chapter 15. Function Descriptions 275

ssEnrollRecordList — List Records In Enrollment Set

ssEnrollRecordList

retcode
reascode
set_name
C-block_pointer

Purpose

Produces a summary list of the records in an enrollment set.

Operands
ssEnrollRecordList

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordList.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set.

C-block_pointer
(input,POINTER,4) is a signed four-byte binary input variable holding the address of the C-block
representing the client to whom the summary list should be sent.

Usage Notes

1. The reusable server kernel writes the summary list to the client represented by C-block_pointer, using
routine ssClientDataPut.

2. If the programmer wishes to capture the output of ssEnrollRecordList for his own purposes, he
can allocate storage to represent a C-block, initialize the C-block using routine ssClientDataInit,
and then call routine ssEnrollRecordList. When ssEnrollRecordList returns, the programmer
can call ssClientDataGet to retrieve the response. After the response is decoded, he should
deallocate the C-block. Note that the response is record-oriented.

3. The output of ssEnrollRecordList is simply one enrollment record per output record. Each output
record contains only the key of the corresponding enrollment record.

4. To retrieve the data associated with a given key, use ssEnrollRecordGet.

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollRecordList completed successfully

ss_enr_rc_error ss_enr_re_db_not_found Set set_name is not loaded

ssEnrollRecordList

276 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

PL/X SSPLXENR COPY

ssEnrollRecordList

Chapter 15. Function Descriptions 277

ssEnrollRecordRemove — Remove Enrollment Record

ssEnrollRecordRemove

retcode
reascode
set_name
key

Purpose

Removes a record from an enrollment set.

Operands
ssEnrollRecordRemove

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssEnrollRecordRemove.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssEnrollRecordRemove.

set_name
(input,CHAR,8) is a character string holding the name of the enrollment set to be modified.

key
(input,CHAR,64) is a character string holding the key of the record to be removed.

Usage Notes

1. Every byte of the key is significant. If your application's keys are, say, text strings, be sure to pad your
keys on the right to fill out the entire key field.

2. Case is significant in keys.
3. If the record bearing key key is not found, an error is returned.
4. The change is not permanent until it is committed.

Messages and Return Codes

Return Code Reason Code Meaning

ss_enr_rc_success ss_enr_re_success ssEnrollRecordRemove completed successfully

ss_enr_rc_error ss_enr_re_db_not_found Set set_name does not exist

ss_enr_rc_error ss_enr_re_rec_not_found Record bearing key key does not exist

ss_enr_rc_error ss_enr_re_write_storage Write to SFS file failed

ssEnrollRecordRemove

278 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Programming Language Bindings

Language Language Binding File

Assembler SSASMENR MACRO

PL/X SSPLXENR COPY

ssEnrollRecordRemove

Chapter 15. Function Descriptions 279

ssMemoryAllocate — Allocate Memory

ssMemoryAllocate

return_code
reason_code
min_bytes_needed
max_bytes_needed
subpool_name
align_type
memory_pointer
bytes_obtained

Purpose

Allocates a block of primary storage (memory).

Operands
ssMemoryAllocate

is the name of the function being invoked.
return_code

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryAllocate.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryAllocate.

min_bytes_needed
(input,INT,4) is a signed four-byte binary input variable holding the minimum number of bytes
needed.

max_bytes_needed
(input,INT,4) is a signed four-byte binary input variable holding the maximum number of bytes
needed.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool from which the storage should be
allocated.

align_type
(input,INT,4) is a signed four-byte binary input variable holding the type of alignment the new buffer
will require.

memory_pointer
(output,INT,4) is a signed four-byte binary output variable to hold the returned memory address.

bytes_obtained
(output,INT,4) is a signed four-byte binary output variable to hold the returned number of bytes
actually allocated.

Usage Notes

1. To issue a request for a block of storage of variable size, set min_bytes_needed equal to the minimum
amount of storage needed and set max_bytes_needed equal to the maximum amount of storage
desired.

ssMemoryAllocate

280 z/VM: Reusable Server Kernel Prog. Guide & Ref.

2. To issue a request for a block of storage of fixed size, set min_bytes_needed=max_bytes_needed.
3. Parameter subpool_name is used unchanged in calls to CMSSTOR and therefore must adhere to

CMSSTOR's rules for subpool names.
4. Parameter align_type must have one of these values:

ss_mem_align_norm
Align allocated storage on doubleword boundary

ss_mem_align_page
Align allocated storage on page boundary

5. The reusable server kernel allocates and releases memory in multiples of doublewords. The amount of
storage requested by the caller will be rounded up to the next doubleword boundary before the
allocation request is processed.

6. If the requested storage could not be obtained, memory_pointer and bytes_obtained are set to zero
and appropriate return and reason codes are returned.

Messages and Return Codes

Return Code Reason Code Meaning

ss_mem_rc_success ss_mem_re_success ssMemoryAllocate completed
successfully

ss_mem_rc_error ss_mem_re_bad_align align_type is not recognized

ss_mem_rc_error ss_mem_re_bad_amount Error in amount specification

ss_mem_rc_error ss_mem_re_out_of_storage Storage could not be obtained

ss_mem_rc_error ss_mem_re_subpool_deleted Subpool deleted while call was in progress

Programming Language Bindings

Language Language Binding File

Assembler SSASMMEM MACRO

PL/X SSPLXMEM COPY

ssMemoryAllocate

Chapter 15. Function Descriptions 281

ssMemoryCreateDS — Create Data Space

ssMemoryCreateDS

return_code
reason_code
subpool_name
number_of_pages
storage_key
option_count
option_array
asit
alet

Purpose

Creates a data space and prepares the reusable server kernel to manage the storage therein.

Operands
ssMemoryCreateDS

is the name of the function being invoked.
return_code

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryCreateDS.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryCreateDS.

subpool_name
(input,CHAR,8) is a character string holding the subpool name to be assigned to the new data space.

number_of_pages
(input,INT,4) is a signed four-byte binary input variable specifying the size to be passed to DMSSPCC.

storage_key
(input,INT,4) is a signed four-byte binary input variable specifying the storage key to be passed to
DMSSPCC.

option_count
(input,INT,4) is a signed four-byte binary input variable specifying the option count to be passed to
DMSSPCC.

option_array
(input,INT,4*option_count) is an array of signed four-byte binary input variables specifying the option
array to be passed to DMSSPCC.

asit
(output,CHAR,8) is an output character buffer to hold the returned ASIT.

alet
(output,INT,4) is an signed four-byte binary output variable to hold the returned ALET.

Usage Notes

1. Review the usage notes for CSL routines DMSSPCC and DMSSPLA before using ssMemoryCreateDS.
For more information, see z/VM: CMS Callable Services Reference.

ssMemoryCreateDS

282 z/VM: Reusable Server Kernel Prog. Guide & Ref.

2. The value of subpool_name is used in constructing the name of the data space and therefore must
adhere to the character set composition rules for data space names. For more information, see the
description of CSL routine DMSSPCC in the book z/VM: CMS Callable Services Reference.

3. The reusable server kernel uses storage in the primary address space to keep track of free and used
pieces of storage in the data space. The primary address space storage used for this purpose is taken
from CMS through CMSSTOR OBTAIN under subpool name subpool_name.

4. Parameters number_of_pages and storage_key are passed directly to DMSSPCC.
5. If option_count is zero, ssMemoryCreateDS uses DMSSPCC's defaults, except that it asks for the data

space to be created SHARE. The virtual machine's XCONFIG ADDRSPACE directory entry must be set
up accordingly.

6. ssMemoryCreateDS asks DMSSPLA to create the ALET using the WRITE and SYNCH options. The
reusable server kernel does not keep track of the generated ALET; the application is free to use
DMSSPLR and DMSSPLA to manipulate ALETs.

7. After calling ssMemoryCreateDS successfully, allocate and release storage in the data space using
routines ssMemoryAllocate and ssMemoryRelease.

8. To delete the data space, use ssMemoryDelete.

Messages and Return Codes

Return Code Reason Code Meaning

ss_mem_rc_success ss_mem_re_success ssMemoryCreateDS completed successfully

ss_mem_rc_error ss_mem_re_bad_amount number_of_pages is invalid

ss_mem_rc_error ss_mem_re_bad_key storage_key is invalid

ss_mem_rc_error ss_mem_re_spcc_fail DMSSPCC failed

ss_mem_rc_error ss_mem_re_spla_fail DMSSPLA failed

ss_mem_rc_error ss_mem_re_out_of_storag
e

Storage could not be obtained

ss_mem_rc_error ss_mem_re_subpool_exist
s

Subpool already exists

Programming Language Bindings

Language Language Binding File

Assembler SSASMMEM MACRO

PL/X SSPLXMEM COPY

ssMemoryCreateDS

Chapter 15. Function Descriptions 283

ssMemoryDelete — Delete Subpool

ssMemoryDelete

return_code
reason_code
subpool_name

Purpose

Deletes a memory subpool, and the corresponding data space if there is one.

Operands
ssMemoryDelete

is the name of the function being invoked.
return_code

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryDelete.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryDelete.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool to be deleted.

Usage Notes

1. The reusable server kernel deletes its record of the subpool and issues a corresponding SUBPOOL
DELETE call to CMS.

2. If the subpool is a data space, the corresponding data space is also deleted.

Messages and Return Codes

Return Code Reason Code Meaning

ss_mem_rc_success ss_mem_re_success ssMemoryDelete completed successfully

ss_mem_rc_error ss_mem_re_no_subpool Unrecognized subpool name

ss_mem_rc_error ss_mem_re_spd_fail SUBPOOL DELETE call failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMMEM MACRO

PL/X SSPLXMEM COPY

ssMemoryDelete

284 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssMemoryRelease — Release Memory

ssMemoryRelease

return_code
reason_code
bytes_released
subpool_name
memory_pointer

Purpose

Releases a block of primary storage (memory).

Operands
ssMemoryRelease

is the name of the function being invoked.
return_code

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssMemoryRelease.

reason_code
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssMemoryRelease.

bytes_released
(input,INT,4) is a signed four-byte binary input variable holding the number of bytes being released.

subpool_name
(input,CHAR,8) is a character string holding the name of the subpool from which the storage was
allocated.

memory_pointer
(input,INT,4) is a signed four-byte binary input variable holding the address of the storage being
released.

Usage Notes

1. The buffer being released must reside on a doubleword boundary.
2. If it does not represent an integral number of doublewords, parameter bytes_released is rounded up to

the next doubleword boundary before being used.

Messages and Return Codes

Return Code Reason Code Meaning

ss_mem_rc_success ss_mem_re_success ssMemoryRelease completed
successfully

ss_mem_rc_error ss_mem_re_bad_align Buffer is not aligned on doubleword
boundary

ss_mem_rc_error ss_mem_re_bad_amount Error in amount specification

ss_mem_rc_error ss_mem_re_no_subpool Unrecognized subpool name

ssMemoryRelease

Chapter 15. Function Descriptions 285

Return Code Reason Code Meaning

ss_mem_rc_error ss_mem_re_not_alloc Some or all of buffer is already free

ss_mem_rc_error ss_mem_re_subpool_deleted Subpool deleted while call in progress

ss_mem_rc_error ss_mem_re_out_of_storage Not enough storage available

Programming Language Bindings

Language Language Binding File

Assembler SSASMMEM MACRO

PL/X SSPLXMEM COPY

ssMemoryRelease

286 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssServerRun — Run the Server

ssServerRun

retcode
reascode

Purpose

Runs the server program.

Operands
ssServerRun

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssServerRun.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssServerRun.

Usage Notes

Call this routine only from RSKMAIN and only after you have called ssServiceBind sufficiently to set up
your server.

Messages and Return Codes

Return Code Reason Code Meaning

ss_srv_rc_success ss_srv_re_success ssServerRun completed successfully

ss_srv_rc_error anything else Nonzero return code from PROFILE RSK.

Programming Language Bindings

Language Language Binding File

Assembler SSASMSRV MACRO

PL/X SSPLXSRV COPY

ssServerRun

Chapter 15. Function Descriptions 287

ssServerStop — Stop the Server

ssServerStop

retcode
reascode

Purpose

Stops the server program.

Operands
ssServerStop

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssServerStop.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssServerStop.

Usage Notes

Calling this function will cause the WAITSERV command in PROFILE RSK to complete.

Messages and Return Codes

Return Code Reason Code Meaning

ss_srv_rc_success ss_srv_re_success ssServerStop completed successfully

Programming Language Bindings

Language Language Binding File

Assembler SSASMSRV MACRO

PL/X SSPLXSRV COPY

ssServerStop

288 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssServiceBind — Bind A Service

ssServiceBind

retcode
reascode
service_name
service_name_length
init_addr
service_addr
term_addr

Purpose

Informs the reusable server kernel of the existence of a new service.

Operands
ssServiceBind

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssServiceBind.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssServiceBind.

service_name
(input,CHAR,service_name_length) is the name of the new service.

service_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the service name.

init_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of the service's
initialization entry point.

service_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of the service's service
entry point.

term_addr
(input,INT,4) is a signed four-byte binary input variable holding the address of the service's
termination entry point.

service_type
(input,INT,4) is a signed four-byte binary input variable holding the kind of service being bound.

Usage Notes

1. Case is not significant in service names.
2. The parameter list array passed to the initialization entry point (pointed to by R1) is organized as

shown in Table 3 on page 6.
3. To signal successful initialization, the initialization entry point should return with the return and reason

code words set to zero. A nonzero return code will cause the start of the service to fail.

ssServiceBind

Chapter 15. Function Descriptions 289

4. The parameter list array passed to the service entry point (pointed to by R1) is organized as shown in
Table 4 on page 7.

5. The parameter list array passed to the termination entry point (pointed to by R1) is organized as shown
in Table 5 on page 7.

6. The values that can be supplied for service_type are:
ss_srv_srvtype_normal

Plain old service.
ss_srv_srvtype_ld

Plain old line driver.
ss_srv_srvtype_ldss

Self-sourced line driver.
7. To activate the service, use one of the line drivers' START commands.
8. ssServiceBind will produce correct results only when it is called by RSKMAIN prior to
ssServerRun. ssServiceBind should never be called under any other conditions. Unpredicable
results could occur.

Messages and Return Codes

Return Code Reason Code Meaning

ss_srv_rc_success ss_srv_re_success ssServiceBind completed successfully

ss_srv_rc_error ss_srv_re_out_of_range service_name_length<0 or >8

ss_srv_rc_error ss_srv_re_bad_type service_type contains unrecognized value.

ss_srv_rc_error ss_srv_re_exists Service already exists

ss_srv_rc_error ss_srv_re_out_of_storage Out of storage

Programming Language Bindings

Language Language Binding File

Assembler SSASMSRV MACRO

PL/X SSPLXSRV COPY

ssServiceBind

290 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssServiceFind — Find A Service

ssServiceFind

retcode
reascode
service_name
service_name_length
S-block_address

Purpose

Obtains descriptive information about a service.

Operands
ssServiceFind

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssServiceFind.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssServiceFind.

service_name
(input,CHAR,service_name_length) is the name of the new service.

service_name_length
(input,INT,4) is a signed four-byte binary input variable holding the length of the service name.

S-block_address
(output,POINTER,4) is a signed four-byte binary output variable to hold the address of the found
service's S-block.

Usage Notes

1. Case is not significant in service names.
2. The returned S-block is organized according to Table 2 on page 6.
3. If the service could not be found, a return and reason code are generated and sblock_address is

returned as 0.

Messages and Return Codes

Return Code Reason Code Meaning

ss_srv_rc_success ss_srv_re_success ssServiceFind completed successfully

ss_srv_rc_error ss_srv_re_out_of_range service_name_length<0 or >8

ss_srv_rc_error ss_srv_re_not_found The named service could not be found.

ssServiceFind

Chapter 15. Function Descriptions 291

Programming Language Bindings

Language Language Binding File

Assembler SSASMSRV MACRO

PL/X SSPLXSRV COPY

ssServiceFind

292 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssSgpCreate — Create a Storage Group

ssSgpCreate

retcode
reascode
storage_group_number
minidisk_count
minidisk_array
attribute_count
attribute_array

Purpose

Identifies a set of minidisks to be managed as a storage group.

Operands
ssSgpCreate

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssSgpCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssSgpCreate.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of the new storage group.

minidisk_count
(input,INT,4) is a signed four-byte binary input variable holding the number of minidisks in the new
storage group.

minidisk_array
(input,INT,4*minidisk_count) is an array of signed four-byte binary input variables holding the device
addresses of the minidisks to be included in the new storage group.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of attributes in the
attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input variables holding the
attributes to be associated with the new storage group.

Usage Notes

1. Parameter storage_group_number must be in the range 0 to 1023, inclusive.
2. Each minidisk to be included in the storage group must have already been formatted at 4 KB by the
FORMAT command and reserved by the RESERVE command. The reusable server kernel requires that
its minidisks exhibit this format.

3. There is a limit of 13,000 minidisks per storage group, and the sum of the sizes of the data areas on
the minidisks must not exceed X'FFFFFFFF' 4 KB blocks.

ssSgpCreate

Chapter 15. Function Descriptions 293

4. The storage group's existence is recorded in the storage group definition file and persists across
instances of the server program. For more information on the description of the storage group
definition file, see Chapter 12, “Initialization and Profiles,” on page 63.

5. No attributes are currently recognized in the attribute_array (in other words, if attribute_count is
nonzero, ss_sgp_re_bad_attrib is returned).

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpCreate completed successfully

ss_sgp_rc_error ss_sgp_re_out_of_range storage_group_number, minidisk_count or
attribute_count is out of range

ss_sgp_rc_error ss_sgp_re_bad_attrib attribute_array contains an unrecognized attribute

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex creation or acquisition failed

ss_sgp_rc_error ss_sgp_re_exists Storage group already exists

ss_sgp_rc_error ss_sgp_re_out_of_storage Out of storage

ss_sgp_rc_error ss_sgp_re_cv_fail Condition variable creation failed

ss_sgp_rc_warning ss_sgp_re_rewrite_fail Rewrite of storage group definitions failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpCreate

294 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssSgpDelete — Delete a Storage Group

ssSgpDelete

retcode
reascode
storage_group_number

Purpose

Removes a set of minidisks from the control of the reusable server kernel.

Operands
ssSgpDelete

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssSgpDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssSgpDelete.

storage_group_number
(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to be
deleted.

Usage Notes

1. To be deleted, the storage group must not be started.
2. The storage group definition file is updated to reflect the fact that the storage group no longer exists.
3. No I/O is done to the storage group as part of deletion; the minidisks remain as they were. To recreate

the storage group, just issue an appropriate call to ssSgpCreate.

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpDelete completed successfully

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_rc_error ss_sgp_re_not_found Storage group not found

ss_sgp_rc_error ss_sgp_re_online Storage group is online

ss_sgp_rc_error ss_sgp_re_maint Maintenance in progress

ss_sgp_rc_warning ss_sgp_re_rewrite_fail Rewrite of storage group definitions failed

ssSgpDelete

Chapter 15. Function Descriptions 295

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpDelete

296 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssSgpFind — Find a Storage Group

ssSgpFind

retcode
reascode
storage_group_name
storage_group_number
io_mode
total_blocks

Purpose

Returns information about the storage group whose name is supplied.

Operands
ssSgpFind

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpFind.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpFind.
storage_group_name

(input,CHAR,8) is an input character string holding the name of the storage group to find.
storage_group_number

(output,INT,4) is a signed four-byte binary output variable to hold the number of the found storage
group.

io_mode
(output,INT,4) is a signed four-byte binary output variable to hold the I/O mode of the found storage
group.

total_blocks
(output,INT,4) is a signed four-byte binary output variable to hold the number of blocks in the storage
group.

Usage Notes

1. Because the lookup is by name, only started storage groups can be found.
2. Right-pad the name with spaces.
3. The value returned in io_mode is one of:

ss_sgp_attrib_block_rw
Started read-write

ss_sgp_attrib_block_ro
Started read-only

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpFind completed successfully

ssSgpFind

Chapter 15. Function Descriptions 297

Return Code Reason Code Meaning

ss_sgp_rc_error ss_sgp_re_not_found Storage group is not found

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpFind

298 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssSgpList — List Storage Groups

ssSgpList

retcode
reascode
number_expected
number_returned
storage_group_list

Purpose

Returns a list of the known storage groups.

Operands
ssSgpList

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpList.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpList.
number_expected

(input,INT,4) is a signed four-byte binary input variable holding the number of storage groups whose
identifiers can fit into the storage_group_list array.

number_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of storage group
identifiers placed into the storage_group_list array.

storage_group_list
(output,INT,4*number_expected) is an array of signed four-byte binary output variables to hold the
identifiers of the existing storage groups.

Usage Notes

1. If the actual number of existing storage groups is greater than number_expected, then the actual
number of storage groups is filled into number_returned, the identifiers of the first number_expected
storage groups are returned in storage_group_list, and a warning is given.

2. To determine information about a particular storage group, use ssSgpQuery.

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpList completed successfully

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_rc_warning ss_sgp_re_too_many More storage groups than number_expected

ssSgpList

Chapter 15. Function Descriptions 299

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpList

300 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssSgpQuery — Query a Storage Group

ssSgpQuery

retcode
reascode
storage_group_number
io_mode
total_blocks
status_word
attributes_expected
attributes_returned
attribute_array
minidisks_expected
minidisks_returned
minidisk_address_array
minidisk_blocks_array

Purpose

Returns information about a specific storage group.

Operands
ssSgpQuery

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpQuery.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpQuery.
storage_group_number

(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group about
which information is desired.

io_mode
(output,INT,4) is a signed four-byte binary output variable to hold the storage group I/O mode.

total_blocks
(output,INT,4) is a signed four-byte binary output variable to hold the total number of 4 KB blocks in
the storage group.

status_word
(output,INT,4) is a signed four-byte binary output variable to hold the storage group status word.

attributes_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of attribute identifiers that
will fit in the attribute_array array.

attributes_returned
(input,INT,4) is a signed four-byte binary output variable to hold the number of entries filled into the
attribute_array array.

attribute_array
(output,INT,4*attribute_count) is an array of signed four-byte binary output variables to hold the
returned storage group attribute indicators.

ssSgpQuery

Chapter 15. Function Descriptions 301

minidisks_expected
(input,INT,4) is a signed four-byte binary input variable holding the number of minidisks for which
descriptive information will fit in the minidisk_address_array, minidisk_total_array, and
minidisk_free_array arrays.

minidisks_returned
(output,INT,4) is a signed four-byte binary output variable to hold the number of minidisks for which
descriptive information was deposited in the minidisk_address_array, minidisk_total_array, and
minidisk_free_array arrays.

minidisk_address_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output variables to hold the
returned minidisk addresses.

minidisk_total_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output variables to hold the
returned sizes of each of the minidisks in the storage group.

minidisk_free_array
(output,INT,4*minidisks_expected) is an array of signed four-byte binary output variables to hold the
returned free block counts for each of the minidisks in the storage group.

Usage Notes

1. The possible values returned for io_mode are:
ss_sgp_attrib_offline

Not started (not online)
ss_sgp_attrib_block_ro

Started for read-only block I/O
ss_sgp_attrib_block_rw

Started for read-write block I/O
2. The size information (total blocks, blocks per minidisk) and status word returned by this function are

meaningful only if the storage group is started.
3. The integer returned in status_word is to be interpreted bit-by-bit according to the following key. In

this key, the bits are numbered from 0 to 31, most significant to least significant. If the named bit is
set, the condition is true. The bits that are not mentioned are meaningless.

Bit Description

0 Stop in progress

1 VM Data Spaces in use

2 DIAG X'250' in use

4. No attributes are currently returned in attribute_array.
5. If the actual number of minidisks is greater than minidisks_expected, then the actual number of

minidisks is returned in parameter minidisks_returned, the descriptive information for the first
minidisks_expected minidisks is filled into the arrays, and a warning is given.

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpQuery completed successfully

ss_sgp_rc_error ss_sgp_re_out_of_range Bad value for attributes_expected or
minidisks_expected

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_rc_error ss_sgp_re_not_found Storage group not found

ssSgpQuery

302 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Return Code Reason Code Meaning

ss_sgp_rc_warning ss_sgp_re_too_many More attributes than attributes_expected or more
minidisks than minidisks_expected

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpQuery

Chapter 15. Function Descriptions 303

ssSgpRead — Read a Storage Group

ssSgpRead

retcode
reascode
storage_group_number
starting_block
block_count
buffer_alet
buffer

Purpose

Reads one or more blocks from a storage group.

Operands
ssSgpRead

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpRead.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpRead.
storage_group_number

(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group from
which blocks should be read.

starting_block
(input,INT,4) is a signed four-byte binary input variable holding the starting block number of the block
extent to be read.

block_count
(input,INT,4) is a signed four-byte binary input variable holding the number of blocks to be read.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when referring to
buffer.

buffer
(output,CHAR,4096*block_count) is a character string to hold the data read from the storage group.

Usage Notes

1. The first block of the storage group is block 0.
2. This entry point can be used only if the storage group is online.
3. This entry point does not serialize access to storage groups. If your application performs storage group

I/O on multiple threads, it is possible that the I/O might happen in parallel, especially in MP situations.
It is the application developer's responsibility to implement any serialization paradigms required.

4. When VM Data Spaces are used, the transfer from the storage group's data space to the target space is
done with PSW key 0.

5. When a CP DIAGNOSE is used, CP is instructed to use key 0 in the channel programs it builds.
6. If DIAG X'A4' is being used for storage group I/O, buffer_alet must be 0.

ssSgpRead

304 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpRead completed successfully

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_rc_error ss_sgp_re_not_found Storage group not found

ss_sgp_rc_error ss_sgp_re_out_of_range Extent is not within storage group size

ss_sgp_rc_error ss_sgp_re_io_fail Requested read failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpRead

Chapter 15. Function Descriptions 305

ssSgpStart — Start a Storage Group

ssSgpStart

retcode
reascode
storage_group_number
storage_group_name
attribute_count
attribute_array

Purpose

Makes a storage group ready for use.

Operands
ssSgpStart

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpStart.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpStart.
storage_group_number

(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to be
brought online.

storage_group_name
(input,CHAR,8) is a character string holding the name to be assigned to the storage group while it is
online.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of attributes present in
the attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input variables holding the
attributes to be used in bringing the storage group online.

Usage Notes

1. Each minidisk to be included in the storage group must have already been formatted at 4 KB by the
FORMAT command and reserved by the RESERVE command. The reusable server kernel requires that
its minidisks exhibit this format.

2. There is a limit of 13,000 minidisks per storage group, and the sum of the sizes of the data areas on
the minidisks must not exceed 16 TB (X'FFFFFFFF' 4 KB blocks).

3. To be eligible for starting, the storage group must be completely stopped.
4. These attributes are recognized in the attribute_array (defaults are labeled as such):

ss_sgp_attrib_ds
Use VM Data Spaces MAPMDISK facility (default)

ss_sgp_attrib_no_ds
Do not use VM Data Spaces MAPMDISK facility

ssSgpStart

306 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ss_sgp_attrib_block_rw
Online read-write for block I/O (default)

ss_sgp_attrib_block_ro
Online read-only for block I/O

5. To use ss_sgp_attrib_ds successfully, the real hardware and the server virtual machine's CP directory
entry must be set up appropriately. This includes:

• The z/VM system must be running on an ESA/390(™) processor.
• In the CP directory, MACHINE XC must be specified.
• In the CP directory, XCONFIG ADDRSPACE must allow enough data spaces to span the storage

groups. Each 2 GB or fraction thereof in a storage group requires one data space.
• In the CP directory, XCONFIG ADDRSPACE must allow an aggregate data space size at least as

large as the sum of the sizes of the storage groups to be brought online with this attribute.
6. If ss_sgp_attrib_ds is specified and the reusable server kernel could not activate VM Data Spaces

support for it, then the reusable server kernel:

a. Sets a warning return code indicating why VM Data Spaces failed, and
b. Attempts to bring the storage group online as if ss_sgp_attrib_no_ds had been specified.

7. If ss_sgp_attrib_no_ds is specified, then the reusable server kernel makes use of DIAGNOSE X'250'
or DIAGNOSE X'A4' for I/O to the storage group, as follows:

a. The reusable server kernel attempts to initialize the DIAGNOSE X'250' environment for each
minidisk in the storage group, using the diagnose in asynchronous mode and with minidisk
caching (MDC) enabled.

b. If DIAGNOSE X'250' initialization is successful for all minidisks in the storage group, then
DIAGNOSE X'250' is used for I/O to the storage group.

c. If DIAGNOSE X'250' initialization fails for at least one minidisk in the storage group, then
DIAGNOSE X'A4' is used for I/O to the storage group and a warning return code and reason code
are returned.

8. Reason codes related to VM Data Spaces are produced with a warning return code. These reason
codes indicate that the use of VM Data Spaces failed and that DIAGNOSE X'250' is being used
instead.

9. Reason codes related to DIAGNOSE X'250' are produced with a warning return code. These reason
codes indicate that the use of DIAGNOSE X'250' failed and that DIAGNOSE X'A4' is being used
instead.

10. If reason code ss_sgp_re_read_only is produced and it really is desired to bring the storage group
online read-write, follow these steps:

Step Task

1 Determine which minidisk(s) are linked read-only.

2 Detach the read-only minidisks and link them read-write.

3 Try again to start the storage group.

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpStart completed successfully

ss_sgp_rc_error ss_sgp_re_bad_attrib Unrecognized item in attribute array

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_rc_error ss_sgp_re_not_found Storage group not found

ssSgpStart

Chapter 15. Function Descriptions 307

Return Code Reason Code Meaning

ss_sgp_rc_error ss_sgp_re_name_in_use Storage group name already in use

ss_sgp_rc_warning ss_sgp_re_online Storage group is already online

ss_sgp_rc_error ss_sgp_re_vdq_fail Minidisk format incorrect or query of format failed

ss_sgp_rc_error ss_sgp_re_read_only At least one minidisk is linked read-only

ss_sgp_rc_warning ss_sgp_re_ds_fail Data space creation failed

ss_sgp_rc_warning ss_sgp_re_pool_fail MAPMDISK minidisk pool definition failed

ss_sgp_rc_warning ss_sgp_re_map_fail MAPMDISK minidisk pool mapping failed

ss_sgp_rc_warning ss_sgp_re_diag_250_fail Use of DIAGNOSE X'250' failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpStart

308 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssSgpStop — Stop a Storage Group

ssSgpStop

retcode
reascode
storage_group_number
attribute_count
attribute_array

Purpose

Makes a storage group unready.

Operands
ssSgpStop

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpStop.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpStop.
storage_group_number

(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to be
taken offline.

attribute_count
(input,INT,4) is a signed four-byte binary input variable holding the number of attributes present in
the attribute_array array.

attribute_array
(input,INT,4*attribute_count) is an array of signed four-byte binary input variables holding the
attributes to be used in taking the storage group offline.

Usage Notes

1. To stop all defined storage groups, set storage_group_number to -1.
2. Once the stop of the storage group begins, no more block I/O may be started, and the stop completes

only after all block I/O to the storage group is completed.
3. No elements are currently recognized in attribute_array.

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpStop completed successfully

ss_sgp_rc_error ss_sgp_re_out_of_range Bad value for attribute_count

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_rc_error ss_sgp_re_not_found Storage group not found

ss_sgp_rc_warning ss_sgp_re_offline Already stopped or stop in progress

ssSgpStop

Chapter 15. Function Descriptions 309

Return Code Reason Code Meaning

ss_sgp_rc_error ss_sgp_re_cv_fail Condition variable wait failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpStop

310 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssSgpWrite — Write a Storage Group

ssSgpWrite

retcode
reascode
storage_group_number
starting_block
block_count
buffer_alet
buffer

Purpose

Writes one or more blocks to a storage group.

Operands
ssSgpWrite

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from ssSgpWrite.
reascode

(output,INT,4) is a signed four-byte binary output variable to hold the reason code from ssSgpWrite.
storage_group_number

(input,INT,4) is a signed four-byte binary input variable holding the number of the storage group to
which blocks should be written.

starting_block
(input,INT,4) is a signed four-byte binary input variable holding the starting block number of the block
extent to be written.

block_count
(input,INT,4) is a signed four-byte binary input variable holding the number of blocks to be written.

buffer_alet
(input,INT,4) is a signed four-byte binary input variable holding the ALET to be used when referring to
buffer.

buffer
(input,CHAR,4096*block_count) is a character string holding the data to be written to the storage
group.

Usage Notes

1. The first block of the storage group is block 0.
2. This entry point can be used only if the storage group is online with attribute ss_sgp_attrib_block_rw.
3. This entry point does not serialize access to storage groups. If your application performs storage group

I/O on multiple threads, it is possible that the I/O might happen in parallel, especially in MP situations.
It is the application developer's responsibility to implement any serialization paradigms required.

4. When VM Data Spaces are used, the transfer from the source space to the storage group's data space
is done with PSW key 0.

5. When a CP DIAGNOSE is used, CP is instructed to use key 0 in the channel programs it builds.

ssSgpWrite

Chapter 15. Function Descriptions 311

6. If DIAG X'A4' is being used for storage group I/O, buffer_alet must be 0.

Messages and Return Codes

Return Code Reason Code Meaning

ss_sgp_rc_success ss_sgp_re_success ssSgpWrite completed successfully

ss_sgp_rc_error ss_sgp_re_mx_fail Mutex acquisition failed

ss_sgp_rc_error ss_sgp_re_not_found Storage group not found

ss_sgp_rc_error ss_sgp_re_out_of_range Extent is not within storage group size

ss_sgp_rc_error ss_sgp_re_wrong_mode Storage group is not started for read-write block I/O

ss_sgp_rc_error ss_sgp_re_io_fail Requested write failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMSGP MACRO

PL/X SSPLXSGP COPY

ssSgpWrite

312 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssTrieCreate — Create a Trie

ssTrieCreate

retcode
reascode
triename
triesize
trieasit
triealet

Purpose

Creates a trie.

Operands
ssTrieCreate

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieCreate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieCreate.

triename
(input,CHAR,8) is a character string holding the name of the new trie.

triesize
(input,INT,4) is a signed four-byte binary input variable holding the size of the new trie's data space,
in pages.

trieasit
(output,CHAR,8) is a character string to hold the ASIT of the data space for the new trie.

triealet
(output,INT,4) is a signed four-byte binary output variable to hold the ALET associated with the new
trie's data space.

Usage Notes

1. The name supplied in parameter triename is used unchanged as a subpool name in a call to
ssMemoryCreateDS. The server author must ensure that this name does not collide with any subpool
names he might be using for other purposes.

2. The caller should specify parameter triesize in pages. The reusable server kernel passes triesize
directly to ssMemoryCreateDS.

3. The reusable server kernel creates the new trie in a data space and returns the data space's ASIT and
ALET to the caller.

Messages and Return Codes

Return Code Reason Code Meaning

ss_tri_rc_success ss_tri_re_success ssTrieCreate completed successfully

ssTrieCreate

Chapter 15. Function Descriptions 313

Return Code Reason Code Meaning

ss_tri_rc_error ss_tri_re_bad_size triesize <0 or >524288

ss_tri_rc_error ss_tri_re_trie_exists Trie triename already exists

ss_tri_rc_error ss_tri_re_out_of_storage Out of storage

ss_tri_rc_error ss_tri_re_dscr_fail Call to ssMemoryCreateDS failed

Programming Language Bindings

Language Language Binding File

Assembler SSASMTRI MACRO

PL/X SSPLXTRI COPY

ssTrieCreate

314 z/VM: Reusable Server Kernel Prog. Guide & Ref.

ssTrieDelete — Delete a Trie

ssTrieDelete

retcode
reascode
triename

Purpose

Deletes a trie.

Operands
ssTrieDelete

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieDelete.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieDelete.

triename
(input,CHAR,8) is a character string holding the name of the trie to be deleted.

Usage Notes

1. This call results in the data space being deleted via call to ssMemoryDelete.
2. If your application has shared the trie's ASIT with other virtual machines, your application is

responsible for telling those other virtual machines about the upcoming deletion prior to calling
ssTrieDelete.

Messages and Return Codes

Return Code Reason Code Meaning

ss_tri_rc_success ss_tri_re_success ssTrieDelete completed successfully

ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found

ss_tri_rc_error ss_tri_re_trie_busy Unable to acquire lock necessary to delete trie

Programming Language Bindings

Language Language Binding File

Assembler SSASMTRI MACRO

PL/X SSPLXTRI COPY

ssTrieDelete

Chapter 15. Function Descriptions 315

ssTrieRecordInsert — Insert Record Into Trie

ssTrieRecordInsert

retcode
reascode
triename
triealet
recnum
index_buffer
index_length

Purpose

Inserts the record number into the trie, using the specified key.

Operands
ssTrieRecordInsert

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieRecordInsert.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieRecordInsert.

triename
(input,CHAR,8) is a character string holding the name of the trie into which the record is to be
inserted.

triealet
(input,INT,4) is a signed four-byte binary input variable holding the ALET of the data space in which
the trie resides.

recnum
(input,INT,4) is a signed four-byte binary input variable holding the record number to be inserted into
the trie.

index_buffer
(input,CHAR,index_length) is a character string holding the index of the record being inserted.

index_length
(input,INT,4) is a signed four-byte binary input variable holding the length of index_buffer.

Usage Notes

1. If your virtual machine created the trie, you may use either the trie name or the trie ALET value to
identify the trie. If triealet is nonzero the reusable server kernel will use your ALET directly. To refer to
your trie by name, set triealet to zero and use input triename to specify the name of your trie.

2. If your virtual machine did not create the trie (that is, if the creator passed you the trie ASIT and you
generated the ALET yourself), you must use parameter triealet to pass the reusable server kernel the
ALET you generated for the trie. In this case, what you pass via triename is irrelevant.

3. The index string must not be longer than 256 bytes.

ssTrieRecordInsert

316 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Messages and Return Codes

Return Code Reason Code Meaning

ss_tri_rc_success ss_tri_re_success ssTrieRecordInsert completed successfully

ss_tri_rc_error ss_tri_re_bad_index_len Index string has improper length

ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found

ss_tri_rc_error ss_tri_re_trie_busy Unable to acquire lock necessary to update trie

ss_tri_rc_error ss_tri_re_out_of_ds_storag
e

The data space is full

Programming Language Bindings

Language Language Binding File

Assembler SSASMTRI MACRO

PL/X SSPLXTRI COPY

ssTrieRecordInsert

Chapter 15. Function Descriptions 317

ssTrieRecordList — List Matching Records

ssTrieRecordList

retcode
reascode
triename
triealet
index_buffer
index_length
recnum_array
recnum_array_capacity
records_found

Purpose

Generates a list of all the record numbers whose keys match the specified prefix.

Operands
ssTrieRecordList

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssTrieRecordList.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssTrieRecordList.

triename
(input,CHAR,8) is a character string holding the name of the trie to be interrogated.

triealet
(input,INT,4) is a signed four-byte binary input variable holding the ALET of the data space in which
the trie resides.

index_buffer
(input,CHAR,index_length) is a character string holding the key prefix to be used in the lookup.

index_length
(input,INT,4) is a signed four-byte binary input variable holding the length of index_buffer.

recnum_array
(output,INT,4*recnum_array_capacity) is an array of signed four-byte binary output variables to hold
the record numbers whose keys match the supplied prefix.

recnum_array_capacity
(input,INT,4) is a signed four-byte binary input variable holding the size of recnum_array.

records_found
(output,INT,4) is a signed four-byte binary output variable to hold the number of record numbers
found.

ssTrieRecordList

318 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Usage Notes

1. If your virtual machine created the trie, you may use either the trie name or the trie ALET value to
identify the trie. If triealet is nonzero the reusable server kernel will use your ALET directly. To refer to
your trie by name, set triealet to zero and use input triename to specify the name of your trie.

2. If your virtual machine did not create the trie (that is, if the creator passed you the trie ASIT and you
generated the ALET yourself), you must use parameter triealet to pass the reusable server kernel the
ALET you generated for the trie. In this case, what you pass via triename is irrelevant.

3. The index string must not be longer than 256 bytes.
4. The reusable server kernel examines the trie and determines the set of record numbers whose keys'

prefixes match the prefix you specified in index_buffer. It then writes the record numbers to the
recnum_array array.

5. If there are more matching records than recnum_array can hold, the reusable server kernel fills
recnum_array to capacity, writes the actual number of matching records to records_found, and returns
success. You must always examine records_found to determine whether your array was large enough.

Messages and Return Codes

Return Code Reason Code Meaning

ss_tri_rc_success ss_tri_re_success ssTrieRecordList completed successfully

ss_tri_rc_error ss_tri_re_bad_index_len Index string has improper length

ss_tri_rc_error ss_tri_re_bad_capacity_le
n

recnum_array_capacity must be ≥ 0

ss_tri_rc_error ss_tri_re_trie_not_found Trie triename was not found

ss_tri_rc_error ss_tri_re_trie_busy Unable to acquire lock necessary to update trie

Programming Language Bindings

Language Language Binding File

Assembler SSASMTRI MACRO

PL/X SSPLXTRI COPY

ssTrieRecordList

Chapter 15. Function Descriptions 319

ssUseridMap — Produce Mapped User ID

ssUseridMap

retcode
reascode
linedriver
linedriver_length
input_node
input_node_length
input_userid
input_userid_length
output_userid
output_userid_length

Purpose

Maps line-driver-specific information through the user ID mapping file.

Operands
ssUseridMap

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssUseridMap.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssUseridMap.

linedriver
(input,CHAR,linedriver_length) is a character string holding the name of the line driver.

linedriver_length
(input,INT,4) is a signed four-byte binary input variable holding the length of linedriver.

input_node
(input,CHAR,input_node_length) is a character string holding the input node for the mapping function.

input_node_length
(input,INT,4) is a signed four-byte binary input variable holding the length of input_node.

input_userid
(input,CHAR,input_userid_length) is a character string holding the input user ID for the mapping
function.

input_userid_length
(input,INT,4) is a signed four-byte binary input variable holding the length of input_userid.

output_userid
(output,CHAR,64) is a character string to hold the output of the mapping function.

output_userid_length
(output,INT,4) is a signed four-byte binary output variable to hold the length of the retrieved user ID.

ssUseridMap

320 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Usage Notes

1. The reusable server kernel maps the triplet (linedriver,input_node,input_userid) through the user ID
mapping file and returns the resultant user identifier.

2. For more information about the organization and use of the user ID mapping file, see “User ID Mapping
Facility” on page 69.

Messages and Return Codes

Return Code Reason Code Meaning

ss_uid_rc_success ss_uid_re_success ssUseridMap completed successfully

ss_uid_rc_error ss_uid_re_not_found No matching entry in user ID mapping file

Programming Language Bindings

Language Language Binding File

Assembler SSASMUID MACRO

PL/X SSPLXUID COPY

ssUseridMap

Chapter 15. Function Descriptions 321

ssWorkerAllocate — Allocate Connection to Worker Machine

ssWorkerAllocate

retcode
reascode
instance_C-block
class_name
option_count
option_names
option_values
worker_C-block
connection_ID

Purpose

Allocates a connection to a worker machine, autologging a worker if necessary.

Operands
ssWorkerAllocate

is the name of the function being invoked.
retcode

(output,INT,4) is a signed four-byte binary output variable to hold the return code from
ssWorkerAllocate.

reascode
(output,INT,4) is a signed four-byte binary output variable to hold the reason code from
ssWorkerAllocate.

instance_C-block
(input,POINTER,4) is a pointer holding the address of the C-block previously created for the calling
instance by its own line driver.

class_name
(input,CHAR,8) is a character string holding the name of the class from which a worker machine
should be selected.

option_count
(input,INT,4) is a signed four-byte binary input variable holding the number of elements in the
option_names and option_values arrays.

option_names
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding option names.

option_values
(input,INT,4*option_count) is an array of signed four-byte binary input variables holding option values.

worker_C-block
(output,POINTER,4) is a pointer to hold the address of the returned worker C-block, constructed by
the server kernel to represent the connection between the instance and the selected worker.

connection_ID
(output,INT,4) is a signed four-byte binary output variable to hold the returned connection ID.

ssWorkerAllocate

322 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Usage Notes

1. Input instance_C-block is the address of the C-block assigned to the instance by its line driver. This
value was passed to the instance in its own parameter list when the instance was started.

2. If the service instance prefers not to receive worker API notifications on its line driver's queue, the
service instance can set parameter instance_C-block to 0 (zero) instead. Supplying a value of 0 will
cause the server kernel to build an instance C-block in which only the following fields are valid:
vc_qh

line driver queue handle
vc_ikey

instance key

The service instance can use these values as inputs in subsequent calls to QueueReceiveImmed or
QueueReceiveBlock, to receive messages indicating worker activity. The C-block is not useful for any
other purpose. The server kernel returns the address of the built C-block in parameter instance_C-
block.

3. The worker class class_name should correspond to a class defined through the WORKER ADD
command. If the class has not yet been created through WORKER ADD, an error is returned.

4. Case is significant in class names.
5. The option_names array can contain any of these values:

ss_wrk_ofn_prefer_empty
The corresponding entry in the option_values array controls how the server kernel will search for
an available worker, as follows:
ss_wrk_ofv_yes

The server kernel will search for empty or not-yet-logged-on worker machines first and direct
the connection to one of those. If no such worker is found the server kernel will determine the
least burdened worker and direct the connection to it.

ss_wrk_ofv_no
The server kernel will search the already-logged-on workers, determine the least burdened
one, and direct the connection to it. If no workers are logged on yet, or if all logged-on
workers are full, the server kernel will autolog another worker and direct the connection to it.

ss_wrk_ofn_retry_count
The corresponding value in the option_values array is the number of worker machines the server
kernel should try before it gives up. Specifying a count of zero means that the server kernel
should try until it runs out of worker machine candidates.

ss_wrk_ofn_alt_userid
The corresponding value in the option_values array is a pointer to an 8-byte character string
which is the alternate user ID to use.

ss_wrk_ofn_alt_seclabel
The corresponding value in the option_values array is a pointer to an 8-byte character string
which is the alternate seclabel to use.

6. The server kernel maintains status information about the workers in each class and uses that status
information when considering whether to try to connect to a worker. The status information, an
integer, indicates either that the worker machine appears healthy or tells the reason why the last
attempt to connect to the worker machine failed. For more information, see “WORKER MACHINES”
on page 208.

7. To be able to set a worker's alternate user ID and seclabel, the controlling virtual machine must have
permission to issue Diagnose X'D4'. See z/VM: CP Programming Services for more information. If you
attempt to use the reusable server kernel's alternate user ID machinery and your virtual machine
does not have the privilege necessary to issue Diagnose X'D4', your virtual machine will take a
program check. It is your responsibility to recover from this.

8. If you specify an alternate seclabel, you must also specify an alternate user ID. The reusable server
kernel does not check this.

ssWorkerAllocate

Chapter 15. Function Descriptions 323

9. Output worker_C-block will contain the address of the C-block that describes the connection from the
instance to the worker. The instance should consult this C-block for:

• The queue handle it should use when sending IPC messages to the server kernel about this worker
connection

• The line driver key it should use when sending IPC messages to the server kernel about this worker
connection

10. The returned connection ID will appear in IPC messages arriving on the instance's line driver queue.
These messages, keyed with the instance's key, are indicative of activity on the worker connection.

Messages and Return Codes

Return Code Reason Code Meaning

ss_wrk_rc_success ss_wrk_re_success ssWorkerAllocate completed
successfully

ss_wrk_rc_error ss_wrk_re_out_of_storage Insufficient storage to connect to
worker

ss_wrk_rc_error ss_wrk_re_bad_count Input option_count contains a negative
value

ss_wrk_rc_error ss_wrk_re_bad_flag_name Input option_names contains an
unrecognized name

ss_wrk_rc_error ss_wrk_re_bad_flag_value Input option_values contains an
unrecognized value

ss_wrk_rc_error ss_wrk_re_no_class The class you requested does not exist

ss_wrk_rc_error ss_wrk_re_no_subordinates No worker machine could be found

ss_wrk_rc_error ss_wrk_re_algtries_exceeded The last worker machine tried was
autologged several times but the IUCV
connection never succeeded

ss_wrk_rc_error ss_wrk_re_autolog_fail The server kernel was unable to autolog
the last virtual machine it tried

ss_wrk_rc_error ss_wrk_re_timer_fail The server kernel tried to use the CMS
Timer API to set a timer but the Timer
API failed

ss_wrk_rc_error ss_wrk_re_iucvcon_fail The server kernel encountered an
unrecoverable IUCV CONNECT error on
the last worker virtual machine it tried

ss_wrk_rc_error ss_wrk_re_force_fail The server kernel tried to CP FORCE a
worker (to reset it) but was unable to
issue the FORCE command

ss_wrk_rc_error ss_wrk_re_force_timeout The server kernel FORCEd a worker (to
reset it) but did not see the worker
become logged off - possible hung user

ss_wrk_rc_error ss_wrk_re_oper_delete While the server kernel was trying to
bring up the worker connection, the
operator issued WORKER DELETE or
WORKER DELCLASS, thus nullifying the
connection attempt

ssWorkerAllocate

324 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Programming Language Bindings

Language Language Binding File

Assembler SSASMWRK MACRO

PL/X SSPLXWRK COPY

ssWorkerAllocate

Chapter 15. Function Descriptions 325

ssWorkerAllocate

326 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Chapter 16. RSK Sockets

The RSK socket library is a PL/X application programming interface for socket programming. The library is
a very thin layer over the IUCV socket interface and can be used only within an RSK program. 25 While the
RSK socket library does not provide a correspondent for every IUCV socket function, it provides many of
the basic operations necessary to communicate with other socket programs. The RSK socket library also
provides some RSK-specific functions.

The RSK socket library is aware of multitasking CMS and integrates well with it. For example, when a
socket operation blocks, only the calling thread blocks. Further, the library offers extensions to traditional
socket semantics, making available asynchronous versions of often-used socket calls (such as write()).
When the caller performs an asynchronous socket operation, the completion notice arrives as a message
on a CMS queue.

Prerequisite Knowledge
This chapter assumes you have a working knowledge of the Reusable Server Kernel. You will also need to
be experienced in socket programming, such as from having used IUCV sockets, C sockets, or Rexx/
Sockets. To use the asynchronous features of the RSK socket library, you will need to understand CMS
interprocess communication (IPC) as implemented by multitasking CMS's "queue" functions (e.g.,
QueueReceiveBlock). Finally, you will need to know how to program in PL/X.

To use the RSK socket documentation effectively, you will need a copy of the "IUCV Sockets" section of
z/VM: TCP/IP Programmer's Reference. That material gives complete usage information for the IUCV
socket API. The best way to use this RSK socket library documentation is to refer to the RSK socket
documentation and the IUCV socket documentation side-by-side.

Available Functions
The following IUCV socket functions have correspondents in the RSK socket interface:

Table 47. Socket Functions Available in RSK Library

IUCV socket function name RSK entry point name

accept() PS_accept()

bind() PS_bind()

close() PS_close()

connect() PS_connect()

gethostid() PS_gethostid()

getpeername() PS_getpeername()

getsockname() PS_getsockname()

25 That is, the callers of the RSK socket library entry points must adhere to the RSK linkage and automatic
storage conventions. See Chapter 11, “Run-Time Environment,” on page 59 for more information.

© Copyright IBM Corp. 1999, 2020 327

Table 47. Socket Functions Available in RSK Library (continued)

IUCV socket function name RSK entry point name

getsockopt() PS_getsockopt()

ioctl() PS_ioctl()

listen() PS_listen()

read() PS_read()

recvfrom() PS_recvfrom()

select() PS_select()

sendto() PS_sendto()

setsockopt() PS_setsockopt()

shutdown() PS_shutdown()

socket() PS_socket()

write() PS_write()

The following additional functions are specific to the RSK socket library:

Table 48. Additional RSK-Specific Functions in Library

Function RSK entry point name

Library initialization PS_libinit()

Library termination PS_libterm()

Application initialization PS_applinit()

Application termination PS_applterm()

Asynchronous read() PS_async_read()

Asynchronous recvfrom() PS_async_recv()

Asynchronous sendto() PS_async_sendto()

Asynchronous write() PS_async_write()

Cancel asynchronous operation PS_cancel()

328 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Programming with RSK Sockets
Programming with the RSK socket library involves the following steps:

1. In each of your PL/X compilation units that will use the RSK socket library, you must include the RSK
socket library language binding macro. To do so, put the following statement into each compilation
unit:

%include syslib(plxsock);

PLXSOCK COPY is in DMSRP MACLIB, which is part of the z/VM PL/X Restricted Source Feature, which
you can order as a feature of z/VM.

2. At run-time, your first step must be to initialize the RSK socket library. This prepares the library to
receive socket calls. To initialize the library, you must either call PS_libinit() yourself or arrange for the
RSK to call it. See “PS_libinit” on page 348 for more information.

3. To perform socket operations, you must create a socket set. 26 We call each RSK socket set an
application and hence the entry point you use for this is PS_applinit().

You supply PS_applinit() with the name (VM user ID) of the TCP/IP stack machine, a unique name for
your new set of sockets, and the number of sockets you want in the set.

PS_applinit() establishes the IUCV connection to the TCP/IP stack machine and prepares the socket
set for your use.

4. You perform operations on the sockets in your set. You use the RSK socket library entry points to do
so. For example, to allocate a new socket, you call PS_socket(), or to write data to a socket, you call
PS_write().

5. When you are done with your set of sockets, you dispose of it by calling PS_applterm(), identifying the
socket set by the unique name you chose for it at its creation.

6. Prior to your server ending, either you should call PS_libterm() or you should arrange for the RSK to call
it. See “PS_libterm” on page 349 for more information.

Restrictions and Limitations
Be aware of the following restrictions and limitations when you use the RSK socket library:

• The RSK socket library uses storage subpool name DMSSBPSO. You should refrain from using this
subpool name.

• The RSK socket library creates an HNDIUCV exit named DMSPLXSK. You should refrain from using this
HNDIUCV exit name.

• The RSK socket library creates CMS semaphores whose names are of the form DMSPLXSKxxxx, where
xxxx is a hexadecimal number. You should refrain from using semaphore names of these forms.

• Each socket set may contain 50 to 2000 sockets, inclusive.
• The RSK itself uses socket set names of the form Uxxxxxxx and Txxxxxxx, where xxxxxxx is a

hexadecimal number. You should refrain from using socket set names of these forms.
• You may create more than one named socket set concurrently. The absolute limit on the number of

socket sets the library can manage is set by call to PS_libinit(). 27 This limit counts both socket sets you
create yourself and RSK UDP or TCP subtasks you have running in your server. Each such subtask uses
one socket set.

26 In IUCV sockets, this step corresponds to establishing a connection to the TCP/IP stack machine and
sending the initial message. In Rexx/Sockets, this step corresponds to invoking Socket('Initialize').

27 When the RSK calls PS_libinit(), it sets the limit to 100.

Chapter 16. RSK Sockets 329

• You may overlap operations on a socket set, but you should not overlap operations on a single socket.
For example, if you use PS_async_write() to write data to a socket, you should not start another write to
that socket until the current write to that socket finishes.

• When you call a synchronous socket operation (such as PS_write()), the calling thread blocks until the
operation completes. Other CMS threads might run while the calling thread waits for the operation to
complete. While the synchronous operation is in progress, other threads are permitted to perform
operations on other sockets in that socket set and on other socket sets.

Data Structures
Certain data structures are important in socket programming. For example, the 16-byte structure
containing the address of a new client (known to C programmers as sockaddr_in) is used throughout the
API. Here are some hypothetical PL/X representations of those data structures. These representations
are referred to in the routines' descriptions below, but they are not provided in PLXSOCK COPY and are
here just for illustrative purposes.

Address Structure

/* sockaddr_in */
declare
 1 sockaddr_in based boundary(word),
 5 si_family fixed(15), /* address family */
 5 si_port fixed(16), /* port number */
 5 si_address fixed(32), /* IP address */
 5 si_zero char(8); /* must be zero */

Timeout Structure

/* timeout structure for select() */
declare
 1 timeval based boundary(word),
 5 tv_sec fixed(31), /* seconds */
 5 tv_usec fixed(31); /* microseconds */

Notes on PLXSOCK COPY
The language binding file PLXSOCK COPY contains constant definitions, structure definitions, and
function prototypes. Some notes on each:

Constants
Certain (but certainly not all) constants relevant to socket programming appear in PLXSOCK COPY. When
the library requires you to supply a constant (such as AF_INET), check the binding to see if a symbolic
name is available. If there is no symbolic name, you will have to make up your own.

Structures
PLXSOCK COPY contains definitions for certain structures commonly used in socket programming. Feel
free to use these structures if you find them helpful.

Function Prototypes
PLXSOCK COPY contains function prototypes for each RSK socket library entry point.

330 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Return Codes and ERRNO Values
By and large, the return code values and errno values returned by the RSK socket library correspond
exactly to the values returned by the IUCV socket API. The following exceptions apply:

• Some entry points unique to the RSK socket library (such as PS_applinit()) supply a return and reason
code. The descriptions below list the return and reason codes that might be produced.

• The RSK socket library defines additional errno values not found in the IUCV socket API. These errno
values come from the additional complexity in the RSK socket library. Their symbolic names and
meanings are:
Name

Meaning
EIBMIUCVERR

Some kind of IUCV error occurred
EIBMLIBERR

The RSK socket library is not initialized
EIBMNOAPPL

The socket set you named does not exist
EIBMNOSOCKAVAIL

No sockets available in socket set
EIBMBADKEYLEN

Notify key length is invalid
EIBMNOSTORAGE

No storage available
EIBMBADBUFLEN

A supplied buffer length is invalid
EIBMBADPARM

Timeout buffer length is invalid
EIBMSHUTDOWN

The TCP/IP stack is shutting down
Any of the RSK socket library routines having errno as an output might produce some of these errno
values.

RSK Socket Calls
This section provides the PL/X language syntax, parameters, and other appropriate information for each
socket call the RSK supports.

The parameter lists and syntax for each routine are illustrated with PL/X snippets. These snippets are not
verbatim examples you can compile and run. They just show the data type of each parameter list entry,
whether the item is input (I) or output (O), and how to code the CALL statement to invoke the function.

Usage notes here are confined to explaining particulars of the RSK socket API. As a result, the information
here is intentionally terse. Again, refer to "IUCV Sockets" in z/VM: TCP/IP Programmer's Reference.

PS_accept

Purpose

Performs socket accept() function.

PS_accept

Chapter 16. RSK Sockets 331

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 lsocket fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 addrlen fixed(31),
 socket fixed(31),
 errno fixed(31);

/* how to call */
call PS_accept
(
 applname, /* I: application name */
 lsocket, /* I: listen socket */
 addrbufptr, /* I: address buffer pointer */
 addrbufsize, /* I: address buffer size */
 addrlen, /* O: address length */
 socket, /* O: new socket number */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
lsocket

Socket you listened on
addrbufptr

Pointer to buffer into which API should place a completed sockaddr_in structure
addrbufsize

Size of said buffer
addrlen

Returned length of sockaddr_in structure
socket

Socket number for new connection
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_applinit

Purpose

Creates a socket set.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */

PS_applinit

332 z/VM: Reusable Server Kernel Prog. Guide & Ref.

declare
 rc fixed(31),
 re fixed(31),
 tcpname char(8),
 applname char(8),
 numwanted fixed(31),
 numgotten fixed(31);

/* how to call */
call PS_applinit
(
 rc, /* O: return code */
 re, /* O: reason code */
 tcpname, /* I: name of TCP/IP stack */
 applname, /* I: appl name to use */
 numwanted, /* I: num of sockets wanted */
 numgotten /* O: num of sockets gotten */
);

Parameters
Parameter

Definition
rc

Return code
re

Reason code
tcpname

User ID of TCP/IP stack machine
applname

Name for new socket set
numwanted

Number of sockets wanted (50 to 2000)
numgotten

Number of sockets gotten

Reason Codes
Reason Code

Meaning
sok_re_bad_ns

numwanted is out of range
sok_re_dup_appl

applname already in use
sok_re_ic_fail

IUCV CONNECT to stack failed
sok_re_bad_inttype

Stack responded improperly to CONNECT
sok_re_is_fail

IUCV SEND to stack failed
sok_re_diff_ns

numgotten ¬= numwanted
sok_re_no_library

Socket library not initialized
sok_re_no_apps

Library unable to handle additional socket sets

PS_applinit

Chapter 16. RSK Sockets 333

Usage Notes

1. If you get a warning return code and you get reason code sok_re_diff_ns, you may proceed to use the
socket set, recognizing you did not get as many sockets as you requested.

2. If you get an error return code and you get reason code sok_re_diff_ns, the socket set was not created
because the TCP/IP stack tried to give you more sockets than you requested.

PS_applterm

Purpose

Terminates a socket set.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 rc fixed(31),
 re fixed(31),
 applname char(8);

/* how to call */
call PS_applterm
(
 rc, /* O: return code */
 re, /* O: reason code */
 applname /* I: set to terminate */
);

Parameters
Parameter

Definition
rc

Return code
re

Reason code
applname

Name of socket set to terminate

Reason Codes
Reason Code

Meaning
sok_re_no_appl

Application not found
sok_re_no_library

Socket library not initialized

Usage Notes

None.

PS_async_read

Purpose

Starts a read of a socket. The library sends an IPC message when the read completes.

PS_applterm

334 z/VM: Reusable Server Kernel Prog. Guide & Ref.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 nqhandle fixed(31),
 nkpointer pointer(31),
 nklength fixed(31),
 xid fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_async_read
(
 applname, /* I: application name */
 socket, /* I: socket to read */
 bufpointer, /* I: pointer to read buffer */
 bufsize, /* I: size of read buffer */
 nqhandle, /* I: handle of notify queue */
 nkpointer, /* I: pointer to notify key */
 nklength, /* I: length of notify key */
 xid, /* O: transaction ID */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket to read
bufpointer

Pointer to buffer to be filled
bufsize

Amount of data wanted
nqhandle

Handle of notify queue
nkpointer

Pointer to key for notify message
nklength

Length of notify message
xid

Transaction ID
rc

Return code
errno

Returned ERRNO

Reason Codes

Not applicable.

PS_async_read

Chapter 16. RSK Sockets 335

Usage Notes

1. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by calling
QueueIdentifyService.

2. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:
Offset.Length

Usage
0.4

Return code
4.4

Errno
8.16

Unused
3. The message will be sent with your notify key as its key.
4. If you need to cancel the operation before it completes, use the returned transaction ID in a call to

PS_cancel().

PS_async_recv

Purpose

Starts a receive of a datagram. The library sends an IPC message when the receive completes.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 flagword fixed(31),
 nqhandle fixed(31),
 nkpointer pointer(31),
 nklength fixed(31),
 xid fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_async_recv
(
 applname, /* I: application name */
 socket, /* I: socket to receive on */
 bufpointer, /* I: pointer to recv buffer */
 bufsize, /* I: size of recv buffer */
 flagword, /* I: flag word */
 nqhandle, /* I: handle of notify queue */
 nkpointer, /* I: pointer to notify key */
 nklength, /* I: length of notify key */
 xid, /* O: transaction ID */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition

PS_async_recv

336 z/VM: Reusable Server Kernel Prog. Guide & Ref.

applname
Name of socket set

socket
Socket to receive on

bufpointer
Pointer to buffer to be filled

bufsize
Amount of data wanted

flagword
Flag word

nqhandle
Handle of notify queue

nkpointer
Pointer to key for notify message

nklength
Length of notify message

xid
Transaction ID

rc
Return code

errno
Returned ERRNO

Reason Codes

Not applicable.

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.
2. The handle for the notify queue must be a service ID. In other words, the queue in which the

notification is to be placed must be a service queue. You must have already arranged for this by calling
QueueIdentifyService.

3. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:
Offset.Length

Usage
0.4

Return code
4.4

Errno
8.16

sockaddr_in describing message source
4. The message will be sent with your notify key as its key.
5. If you need to cancel the operation before it completes, use the returned transaction ID in a call to

PS_cancel().

PS_async_sendto

Purpose

Starts a send of a datagram. The library sends an IPC message when the send completes.

PS_async_sendto

Chapter 16. RSK Sockets 337

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 flagword fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 nqhandle fixed(31),
 nkpointer pointer(31),
 nklength fixed(31),
 xid fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_async_sendto
(
 applname, /* I: application name */
 socket, /* I: socket to send on */
 bufpointer, /* I: pointer to data buffer */
 bufsize, /* I: size of data buffer */
 flagword, /* I: flag word */
 addrbufptr, /* I: pointer to addr buffer */
 addrbufsize, /* I: size of addr buffer */
 nqhandle, /* I: handle of notify queue */
 nkpointer, /* I: pointer to notify key */
 nklength, /* I: length of notify key */
 xid, /* O: transaction ID */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket to send on
bufpointer

Pointer to data buffer
bufsize

Length of data buffer
flagword

Flag word
addrbufptr

Pointer to sockaddr_in structure
addrbufsize

Length of sockaddr_in structure
nqhandle

Handle of notify queue
nkpointer

Pointer to key for notify message
nklength

Length of notify message
xid

Transaction ID

PS_async_sendto

338 z/VM: Reusable Server Kernel Prog. Guide & Ref.

rc
Return code

errno
Returned ERRNO

Reason Codes

Not applicable.

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.
2. The handle for the notify queue must be a service ID. In other words, the queue in which the

notification is to be placed must be a service queue. You must have already arranged for this by calling
QueueIdentifyService.

3. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:
Offset.Length

Usage
0.4

Return code
4.4

Errno
8.16

Unused
4. The message will be sent with your notify key as its key.
5. If you need to cancel the operation before it completes, use the returned transaction ID in a call to

PS_cancel().

PS_async_write

Purpose

Starts a write to a socket. The library sends an IPC message when the write completes.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 nqhandle fixed(31),
 nkpointer pointer(31),
 nklength fixed(31),
 xid fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_async_write
(
 applname, /* I: application name */
 socket, /* I: socket to write to */
 bufpointer, /* I: pointer to data buffer */
 bufsize, /* I: size of data buffer */
 nqhandle, /* I: handle of notify queue */
 nkpointer, /* I: pointer to notify key */
 nklength, /* I: length of notify key */
 xid, /* O: transaction ID */
 rc, /* O: return code */

PS_async_write

Chapter 16. RSK Sockets 339

 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket to write to
bufpointer

Pointer to data buffer
bufsize

Length of data buffer
nqhandle

Handle of notify queue
nkpointer

Pointer to key for notify message
nklength

Length of notify message
xid

Transaction ID
rc

Return code
errno

Returned ERRNO

Reason Codes

Not applicable.

Usage Notes

1. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by calling
QueueIdentifyService.

2. The notification message you see in the service queue will be the concatenation of your notify key and
the following extra data:
Offset.Length

Usage
0.4

Return code
4.4

Errno
8.16

Unused
3. The message will be sent with your notify key as its key.
4. If you need to cancel the operation before it completes, use the returned transaction ID in a call to

PS_cancel().

PS_bind

PS_bind

340 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Purpose

Performs bind() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_bind
(
 applname, /* I: application name */
 socket, /* I: socket for bind */
 addrbufptr, /* I: address buffer pointer */
 addrbufsize, /* I: address buffer size */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket for bind
addrbufptr

Pointer to your built sockaddr_in structure
addrbufsize

Length of your sockaddr_in structure
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_cancel

Purpose

Cancels an asynchronous RSK socket function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */

PS_cancel

Chapter 16. RSK Sockets 341

declare
 applname char(8),
 xid fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_cancel
(
 applname, /* I: application name */
 xid, /* I: transaction to cancel */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
xid

Transaction to cancel
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_close

Purpose

Performs close() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_close
(
 applname, /* I: application name */
 socket, /* I: socket to close */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition

PS_close

342 z/VM: Reusable Server Kernel Prog. Guide & Ref.

applname
Name of socket set

socket
Socket to close

rc
Return code

errno
Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_connect

Purpose

Performs connect() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_connect
(
 applname, /* I: application name */
 socket, /* I: socket to use */
 addrbufptr, /* I: pointer to sockaddr_in */
 addrbufsize, /* I: length of sockaddr_in */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket to close
addrbufptr

Pointer to sockaddr_in describing target
addrbufsize

Length of sockaddr_in
rc

Return code

PS_connect

Chapter 16. RSK Sockets 343

errno
Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_gethostid

Purpose

Performs gethostid() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 hostid fixed(31),
 errno fixed(31);

/* how to call */
call PS_gethostid
(
 applname, /* I: application name */
 hostid, /* O: host ID */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
hostid

Returned host ID
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_getpeername

Purpose

Performs getpeername() function.

PL/X Illustration

%include syslib(plxsock);

PS_gethostid

344 z/VM: Reusable Server Kernel Prog. Guide & Ref.

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_getpeername
(
 applname, /* I: application name */
 socket, /* I: socket number */
 addrbufptr, /* I: pointer to sockaddr_in */
 addrbufsize, /* I: length of sockaddr_in */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
addrbufptr

Pointer to buffer to contain sockaddr_in
addrbufsize

Length of sockaddr_in
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_getsockname

Purpose

Performs getsockname() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_getsockname
(

PS_getsockname

Chapter 16. RSK Sockets 345

 applname, /* I: application name */
 socket, /* I: socket number */
 addrbufptr, /* I: pointer to sockaddr_in */
 addrbufsize, /* I: length of sockaddr_in */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
addrbufptr

Pointer to buffer to contain sockaddr_in
addrbufsize

Length of sockaddr_in
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_getsockopt

Purpose

Performs getsockopt() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 level fixed(31),
 optname fixed(31),
 optvalptr pointer(31),
 optvalbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_getsockopt
(
 applname, /* I: application name */
 socket, /* I: socket number */
 level, /* I: level setting */
 optname, /* I: option name */
 optvalptr, /* I: pointer to value buffer */
 optvalbufsize, /* I: length of value buffer */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

PS_getsockopt

346 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
level

Option level
optname

Name of option being interrogated
optvalptr

Pointer to buffer for option value
optvalbufsize

Size of buffer for option value
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_ioctl

Purpose

Performs ioctl() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 command fixed(31),
 argstrptr pointer(31),
 argstrlen fixed(31),
 respbufptr pointer(31),
 respbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_ioctl
(
 applname, /* I: application name */
 socket, /* I: socket number */
 command, /* I: ioctl command */
 argstrptr, /* I: pointer to arg string */
 argstrlen, /* I: length of arg string */
 respbufptr, /* I: pointer to resp buffer */
 respbufsize, /* I: size of resp buffer */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

PS_ioctl

Chapter 16. RSK Sockets 347

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
command

ioctl() command
argstrptr

Pointer to argument string
argstrlen

Length of argument string
respbufptr

Pointer to response buffer
respbufsize

Size of response buffer
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_libinit

Purpose

Initializes the RSK socket library.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 rc fixed(31),
 re fixed(31),
 numofapps fixed(31);

/* how to call */
call PS_libinit
(
 rc, /* O: return code */
 re, /* O: reason code */
 numofapps /* I: number of applications */
);

Parameters
Parameter

Definition
rc

Return code

PS_libinit

348 z/VM: Reusable Server Kernel Prog. Guide & Ref.

re
Reason code

numofapps
Number of concurrent applications

Reason Codes
Reason Code

Meaning
sok_re_success

Function worked correctly
sok_re_already

Socket library already initialized
sok_re_bad_appl_count

numofapps is out of range
sok_re_out_of_storage

Insufficient storage
sok_re_hs_fail

HNDIUCV SET failed
sok_re_sc_fail

SemCreate failed

Usage Notes

1. You need to coordinate your use of PS_libinit() with the RSK's TCP and UDP line drivers.

The objective in such coordination is to make sure that if the RSK decides to call PS_libinit(), its call
will work. (Most service levels of the RSK cannot tolerate failure of a call to PS_libinit().)

If you plan never ever to use any of the IP functions in the RSK, you will definitely need to call
PS_libinit() exactly once to initialize the RSK socket library, so you should go ahead and issue the call
before you issue any other RSK socket calls.

However, if your server starts the TCP or UDP line drivers (for example, SUBCOM START UDP appears
in your PROFILE RSK), then you should refrain from calling PS_libinit() because the RSK will do so as
part of initializing those line drivers.

If the latter is your situation, you can assume that the RSK has initialized the socket library as soon as
control returns from the first START of the TCP or UDP line driver (e.g., SUBCOM START TCP in
PROFILE RSK).

PS_libterm

Purpose

Terminates the RSK socket library.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 rc fixed(31),
 re fixed(31),

/* how to call */
call PS_libterm
(
 rc, /* O: return code */
 re /* O: reason code */
);

PS_libterm

Chapter 16. RSK Sockets 349

Parameters
Parameter

Definition
rc

Return code
re

Reason code

Reason Codes
Reason Code

Meaning
sok_re_success

Function worked correctly

Usage Notes

1. You need to coordinate your use of PS_libterm() with the RSK's TCP and UDP line drivers.

The objective in such coordination is to make sure that you do not terminate the socket library prior to
the RSK's being ready for it to be terminated.

If you plan never ever to use any of the IP functions in the RSK, you will definitely need to call
PS_libinit() exactly once to terminate the RSK socket library, so you should go ahead and issue the call
after you are all done issuing other RSK socket calls.

However, if your server starts the TCP or UDP line drivers (for example, SUBCOM START UDP appears
in your PROFILE RSK), then you should refrain from calling PS_libterm() because the RSK will do so as
part of terminating those line drivers.

The RSK will terminate the TCP and UDP line drivers only after all of your instance threads have
terminated.

PS_listen

Purpose

Performs listen() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 queuesize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_listen
(
 applname, /* I: application name */
 socket, /* I: socket number */
 queuesize, /* I: backlog queue size */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition

PS_listen

350 z/VM: Reusable Server Kernel Prog. Guide & Ref.

applname
Name of socket set

socket
Socket number

queuesize
Backlog queue size

rc
Return code

errno
Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_read

Purpose

Performs read() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_read
(
 applname, /* I: application name */
 socket, /* I: socket number */
 bufpointer, /* I: pointer to read buffer */
 bufsize, /* I: size of read buffer */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
bufpointer

Pointer to read buffer
bufsize

Size of read buffer

PS_read

Chapter 16. RSK Sockets 351

rc
Return code

errno
Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_recvfrom

Purpose

Performs recvfrom() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 flagword fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_recvfrom
(
 applname, /* I: application name */
 socket, /* I: socket number */
 bufpointer, /* I: pointer to recv buffer */
 bufsize, /* I: size of recv buffer */
 flagword, /* I: flag word */
 addrbufptr, /* I: pointer to sockaddr_in */
 addrbufsize, /* I: size of sockaddr_in */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
bufpointer

Pointer to recv buffer
bufsize

Size of recv buffer
flagword

Flag word
addrbufptr

Pointer to buffer to receive sockaddr_in

PS_recvfrom

352 z/VM: Reusable Server Kernel Prog. Guide & Ref.

addrbufsize
Size of buffer to receive sockaddr_in

rc
Return code

errno
Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.

PS_select

Purpose

Performs select() function. Completion notification arrives as an IPC message in a CMS queue.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 numinuse fixed(31),
 rdptr pointer(31),
 wrptr pointer(31),
 exptr pointer(31),
 toptr pointer(31),
 nqhandle fixed(31),
 nkpointer pointer(31),
 nklength fixed(31),
 xid fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_select
(
 applname, /* I: application name */
 numinuse, /* I: sockets in use */
 rdptr, /* I: pointer to read descriptor */
 wrptr, /* I: pointer to write descriptor */
 exptr, /* I: pointer to exception descriptor */
 toptr, /* I: pointer to timeval structure */
 nqhandle, /* I: handle of notify queue */
 nkpointer, /* I: pointer to notify key */
 nklength, /* I: length of notify key */
 xid, /* O: transaction ID */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
numinuse

Number of sockets named in descriptors
rdptr

Pointer to read-interrogation descriptor

PS_select

Chapter 16. RSK Sockets 353

wrptr
Pointer to write-interrogation descriptor

exptr
Pointer to exception-interrogation descriptor

toptr
Pointer to timeval structure

nqhandle
Handle of notify queue

nkpointer
Pointer to notify key

nklength
Length of notify key

xid
Returned transaction ID

rc
Return code

errno
Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

1. The handle for the notify queue must be a service ID. In other words, the queue in which the
notification is to be placed must be a service queue. You must have already arranged for this by calling
QueueIdentifyService.

2. The size of each descriptor in bytes, fdsize, is given by the formula 4 * ((numinuse+31)/32).
3. The notification message you see in the service queue will be the concatenation of your notify key and

the following extra data:
Offset.Length

Usage
0.4

Return code
4.4

Errno
8.8

Unused
16.fdsize

Read-readiness descriptor
16+fdsize.fdsize

Write-readiness descriptor
16+2*fdsize.fdsize

Exception-readiness descriptor
4. The message will be sent with your notify key as its key.
5. If you need to cancel the operation before it completes, use the returned transaction ID in a call to

PS_cancel().

PS_sendto

PS_sendto

354 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Purpose

Performs sendto() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 flagword fixed(31),
 addrbufptr pointer(31),
 addrbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_sendto
(
 applname, /* I: application name */
 socket, /* I: socket number */
 bufpointer, /* I: pointer to send buffer */
 bufsize, /* I: size of send buffer */
 flagword, /* I: flag word */
 addrbufptr, /* I: pointer to sockaddr_in */
 addrbufsize, /* I: size of sockaddr_in */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
bufpointer

Pointer to send buffer
bufsize

Size of send buffer
flagword

Flag word
addrbufptr

Pointer to sockaddr_in describing recipient
addrbufsize

Size of buffer to receive sockaddr_in
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

1. See the IUCV socket library documentation for definition of the flag word.

PS_sendto

Chapter 16. RSK Sockets 355

PS_setsockopt

Purpose

Performs setsockopt() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 level fixed(31),
 optname fixed(31),
 optvalptr pointer(31),
 optvalbufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_setsockopt
(
 applname, /* I: application name */
 socket, /* I: socket number */
 level, /* I: level setting */
 optname, /* I: option name */
 optvalptr, /* I: pointer to value buffer */
 optvalbufsize, /* I: length of value buffer */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
level

Option level
optname

Name of option being set
optvalptr

Pointer to option value
optvalbufsize

Size of option value
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_setsockopt

356 z/VM: Reusable Server Kernel Prog. Guide & Ref.

PS_shutdown

Purpose

Performs shutdown() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 method fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_shutdown
(
 applname, /* I: application name */
 socket, /* I: socket number */
 method, /* I: shutdown method */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
method

Shutdown method
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_socket

Purpose

Performs socket() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),

PS_shutdown

Chapter 16. RSK Sockets 357

 domain fixed(31),
 type fixed(31),
 protocol fixed(31),
 socket fixed(31),
 errno fixed(31);

/* how to call */
call PS_socket
(
 applname, /* I: application name */
 domain, /* I: domain */
 type, /* I: type */
 protocol, /* I: protocol */
 socket, /* O: socket number */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
domain

Socket domain
type

Socket type
protocol

Protocol to use
socket

Socket number
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

1. Only domain AF_INET is supported.

PS_write

Purpose

Performs write() function.

PL/X Illustration

%include syslib(plxsock);

/* parameter data types */
declare
 applname char(8),
 socket fixed(31),
 bufpointer pointer(31),
 bufsize fixed(31),
 rc fixed(31),
 errno fixed(31);

/* how to call */
call PS_write
(
 applname, /* I: application name */
 socket, /* I: socket number */
 bufpointer, /* I: pointer to write buffer */

PS_write

358 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 bufsize, /* I: size of write buffer */
 rc, /* O: return code */
 errno /* O: ERRNO */
);

Parameters
Parameter

Definition
applname

Name of socket set
socket

Socket number
bufpointer

Pointer to write buffer
bufsize

Size of write buffer
rc

Return code
errno

Returned ERRNO value

Reason Codes

Not applicable.

Usage Notes

None.

PS_write

Chapter 16. RSK Sockets 359

PS_write

360 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix A. Sample PROFILE RSK

/* */

/**/
/* */
/* Sample Reusable Server Kernel profile file */
/* */
/**/

parse arg stuff
say 'Args were' stuff

/****************************/
/* first, config the server */
/****************************/

/****************************/
/* set names of data files */
/****************************/

/* configure key data files */
'CONFIG SGP_FILE MYSERV RSKSGP A'
'CONFIG UMAP_FILE MYSERV RSKUMAP A'

/* config auth data */
'CONFIG AUT_LOCATION MINIDISK'
'CONFIG AUT_LOG MYSERV RSKAUL B'
'CONFIG AUT_DATA_1 MYSERV1 RSKAUD B'
'CONFIG AUT_INDEX_1 MYSERV1 RSKAUX B'
'CONFIG AUT_DATA_2 MYSERV2 RSKAUD B'
'CONFIG AUT_INDEX_2 MYSERV2 RSKAUX B'

/****************************/
/* set other config vars */
/****************************/

/* configure RSCS userid */
address command 'IDENTIFY (LIFO'
parse pull rscsid .
'CONFIG RSCS_USERID' rscsid

/* configure monitor data */
'CONFIG MON_PRODUCT_ID MYSERVER'
'CONFIG MON_KERNEL_ROWS 50'

/* configure authorization database */
'CONFIG AUT_CACHE 100'
'CONFIG AUT_FREE 100'

/* configure AUTHCHECK family */
'CONFIG AUTHCHECK_AUTH ON'
'CONFIG AUTHCHECK_CACHE ON'
'CONFIG AUTHCHECK_CMS ON'
'CONFIG AUTHCHECK_CONFIG ON'
'CONFIG AUTHCHECK_CP ON'
'CONFIG AUTHCHECK_ENROLL ON'
'CONFIG AUTHCHECK_LD ON'
'CONFIG AUTHCHECK_SERVER ON'
'CONFIG AUTHCHECK_SGP ON'
'CONFIG AUTHCHECK_USERID ON'
'CONFIG AUTHCHECK_WORKER ON'

/* configure memory API */
'CONFIG MEM_MAXFREE 100'

/* set NOMAP actions */
'CONFIG NOMAP_TCP OFF'
'CONFIG NOMAP_UDP OFF'
'CONFIG NOMAP_MSG OFF'
'CONFIG NOMAP_APPC OFF'
'CONFIG NOMAP_IUCV OFF'
'CONFIG NOMAP_SPOOL OFF'

/* configure MSG driver */
'CONFIG MSG_NOHDR OFF'

© Copyright IBM Corp. 1999, 2020 361

/* configure SPOOL driver */
'CONFIG SPL_INPUT_FT RSKRQST'
'CONFIG SPL_OUTPUT_FT RSKRESP'

/* configure implicit routing */
'CONFIG VM_CONSOLE ON'
'CONFIG VM_MSG ON'
'CONFIG VM_SPOOL ON'
'CONFIG VM_SUBCOM ON'

/***************************/
/* and start it */
/***************************/

'RUNSERV'
if (rc<>0) then
 return 100

/**/
/* attach certain services to subcom driver */
/**/

'SUBCOM START WORKER'
'SUBCOM START USERID'
'SUBCOM START SERVER'
'SUBCOM START AUTH'
'SUBCOM START ENROLL'
'SUBCOM START SGP'
'SUBCOM START CMS'
'SUBCOM START CP'

'SUBCOM START TCP'
'SUBCOM START IUCV'
'SUBCOM START APPC'
'SUBCOM START SPOOL'
'SUBCOM START MSG'
'SUBCOM START CONSOLE'

/**/
/* attach certain services to console too */
/**/

'CONSOLE START CACHE'
'CONSOLE START CONFIG'
'CONSOLE START USERID'
'CONSOLE START WORKER'
'CONSOLE START SERVER'
'CONSOLE START AUTH'
'CONSOLE START SGP'
'CONSOLE START CMS'
'CONSOLE START CP'
'CONSOLE START ENROLL'

'CONSOLE START TCP'
'CONSOLE START IUCV'
'CONSOLE START APPC'
'CONSOLE START SPOOL'
'CONSOLE START MSG'
'CONSOLE START SUBCOM'

/**/
/* and attach some to the MSG driver */
/**/

'MSG START CACHE'
'MSG START CONFIG'
'MSG START USERID'
'MSG START SERVER'
'MSG START AUTH'
'MSG START SGP'
'MSG START CMS'
'MSG START CP'
'MSG START ENROLL'
'MSG START WORKER'

'MSG START TCP'
'MSG START SPOOL'
'MSG START MSG'
'MSG START SUBCOM'

/**/

362 z/VM: Reusable Server Kernel Prog. Guide & Ref.

/* start author-supplied services */
/**/

/* for example... */
'TCP START MYSERV 500 10 0.0.0.0 TCPIP1'
'TCP START MYSERV 500 10 0.0.0.0 TCPIP2'
'TCP START MYSERV 500 10 0.0.0.0 TCPIP3'

'SUBCOM START MYOP'
'CONSOLE START MYOP'
'MSG START MYOP'

/**/
/* wait for server to end */
/**/

'WAITSERV'

/**/
/* perform server-specific termination here */
/**/

/**/
/* ... and return to caller */
/**/

return 0

Appendix A. Sample PROFILE RSK 363

364 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix B. Sample User ID Mapping File

**
* *
* Sample Reusable Server Kernel userid mapping file *
* *
* This file contains the mapping table that translates *
* a two-token userid identifier to a single-token userid. *
* *
* *
* USAGE NOTES: *
* *
* 1. File can be V-format or F-format, it doesn't matter. *
* LRECL doesn't matter, either. *
* *
* 2. Blank lines and lines starting with "*" are ignored. *
* *
* 3. If a ";" appears in the line, the ";" and everything *
* after the ";" are ignored. *
* *
* 4. Each clause must fit completely in one file record. *
* *
* 5. Case IS significant in this file. *
* *
* 6. The keyword in each clause must be in UPPER CASE. *
* *
* 7. Unrecognized clauses are skipped without mention. *
* *
* 8. The server kernel requires a userid mapping file to *
* be present. *
* *
* *
* CLAUSE DEFINITION: *
* *
* Each clause is a record as follows: *
* *
* MAP input_conn input_nodeid input_userid output_userid ; comment *
* *
* where: *
* *
* MAP is a literal identifying a mapping record *
* input_conn is the input connectivity technology name *
* input_nodeid is the input node ID *
* input_userid is the input user ID *
* output_userid is the output of translation *
* comment is an optional comment *
* *
* input_conn is one of: *
* *
* TCP describes a TCP/IP mapping *
* UDP describes a UDP/IP mapping *
* IUCV describes an IUCV mapping *
* APPC describes an APPC/VM mapping *
* SPOOL describes a SPOOL mapping *
* MSG describes a MSG mapping *
* * applies to all technologies *
* *
* Notes: *
* *
* 1. The input fields are expressed in the same notation as queue *
* and event keys in CMS Application Multitasking, namely: *
* *
* a. Case is significant, *
* b. "*" is a wildcard of 0 or more characters, *
* c. "%" is a wildcard of exactly one character, *
* d. "'" is an escape character. *
* *
* For example, "GDLVM%" matches GDLVM1, GDLVM2, etc. but not *
* GDLVMV50, and "GDL*" matches GDLVM1, GDLVMV50, GDLAIX, etc. *
* WARNING: if you want "*", "%", or "'" to be a literal in *
* the field, precede it by the escape character '. *
* *
* 2. The output_userid field can be any literal or "=" to mean *
* "use the value of input_userid". *
* *
* 3. The input fields can each be up to 64 bytes long. *

© Copyright IBM Corp. 1999, 2020 365

* *
* 4. The output_userid field can be up to 64 bytes long. *
* *
* Examples: *
* *
* MAP APPC '*USERID:* BKW BKW *
* MAP IUCV GDLVM7 BKW BKW *
* MAP TCP 9.130.57.10 * BKW *
* MAP UDP 9.130.57.10 * BKW *
* MAP SPOOL GDLVM7 BKW BKW *
* MAP MSG GDLVMWEB BKW BKW *
* *
* In these examples, all of the following clients appear to be *
* userid BKW: *
* *
* - an IUCV-connected client coming from a virtual machine *
* whose userid is BKW *
* *
* - an APPC/VM-connected client whose LU starts with "*USERID" *
* and whose security userid is BKW *
* *
* - a TCP/IP-connected client residing on machine 9.130.57.10 *
* *
* - a UDP/IP-connected client residing on machine 9.130.57.10 *
* *
* - a spool-connected client sending from BKW at GDLVM7 *
* *
* - a MSG-connected client sending from BKW at GDLVMWEB *
* *
* *
* SEARCH TECHNIQUE: *
* *
* The file is searched top to bottom, the first matching clause *
* being the one that takes effect. *
* *
**

366 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix C. Authorization Data File Formats

This appendix describes the internals of the files used to hold authorization data managed by the
reusable server kernel. The information is provided so that vendors and toolsmiths might have a way to
write management tools for these data files.

Overview
First, it's important to note that an authorization data set consists of a data file together with its
corresponding index file. The data file contains records that define object classes, objects, users, and
rules. The index file contains hash tables that let the reusable server kernel quickly locate specific
objects' and specific users' information in the corresponding data file.

If the authorization data is being kept on minidisk, the reusable server kernel will keep twin copies of the
authorization data set and will also keep a third kind of file, a log file, that lets it ensure consistency
between an index file and its corresponding data file.28 The reusable server kernel uses the log file to
keep track of whether related changes are successfully applied to both an index file and its corresponding
data file. The log file lets the reusable server kernel recover an authorization data set from its twin if a
system failure should introduce some kind of integrity problem.

The authorization data files make heavy use of linked lists within the files themselves to relate records to
one another. For example, all of the authorization rules applying to a given user are linked to one another,
so that they may all be removed together by ssAuthDeleteUser. In all such linked lists, the linking is
accomplished by file record number.

The Data File
The data file's role is to contain specific definitions of objects, users, classes, and rules. The data file is an
F 300 file. Each record (or row) of a data file contains:

• A definition of an object class and a doubly-linked-list listhead that anchors all of the rows defining
objects in this class, OR

• A definition of an object and a doubly-linked-list listhead that anchors all of the rows defining rules
applying to this object, OR

• A definition of a user and a doubly-linked-list listhead that anchors all of the rules mentioning this user,
OR

• A definition of a specific rule, that is, a correlation between an object, a user, and some subset of the
actions defined on the class to which the object belongs, OR

• A stamp indicating that the row is free (unused) so that it might be allocated for another purpose at
some time in the future.

One can see, then, that the relationship between object classes, objects, users, and actions is recorded by
maintaining linkages among the records in the data file.

The following tables give the specific formats of each of the kinds of records found in the data file.

Table 49. Free Row

Offset Length Usage

0 4 X'00000000'

28 The log file is unnecessary for SFS situations because the reusable server kernel just dedicates a work unit
to the authorization data set.

© Copyright IBM Corp. 1999, 2020 367

Table 49. Free Row (continued)

Offset Length Usage

4 8 Unused

12 4 Row number of next free row

Table 50. Class Row

Offset Length Usage

0 4 X'00000001'

4 4 Row number of next class row

8 4 Row number of previous class row

12 4 Row number of first object in class

16 4 Row number of last object in class

20 4 Class identifier

24 8 Class name

32 4 Number of operations defined on class

36 128 Operation names (four bytes each)

Table 51. Object Row

Offset Length Usage

0 4 X'00000002'

4 4 Row number of first rule for object

8 4 Row number of last rule for object

12 4 Row number of next object in class

16 4 Row number of previous object in class

20 4 Row number of next object in object hash

24 4 Row number of previous object in object hash

28 4 Object ID

32 4 Class ID of class to which object belongs

36 4 Row number of said class's row

40 4 Length of object name

44 256 Object name

Table 52. User Row

Offset Length Usage

0 4 X'00000003'

4 4 Length of user ID

8 4 Unused

12 4 Row number of first rule for user

368 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 52. User Row (continued)

Offset Length Usage

16 4 Row number of last rule for user

20 4 Row number of next user in user hash

24 4 Row number of previous user in user hash

28 64 User ID

Table 53. Rule Row

Offset Length Usage

0 4 X'00000004'

4 4 Row number of next rule for object

8 4 Row number of previous rule for object

12 4 Row number of next rule for user

16 4 Row number of previous rule for user

20 4 Row number of user row

24 4 Row number of object row

28 4 Length of user ID

32 64 User ID

96 4 Object ID

100 4 Operation count

104 128 Permitted operations (four bytes each)

The Index File
The index file, an F 4096 file, contains these three things:

• An anchor row that gives certain critical information about the authorization data set
• An object hash that lets the reusable server kernel find a given object's row quickly
• A user hash that lets the reusable server kernel find a given user's row quickly

The anchor row -- record 1 of the index file -- is described in Table 54 on page 369.

Table 54. Anchor Row

Offset Length Usage

0 4 Number of rows in data file

4 4 Row number of first class row in data file

8 4 Row number of last class row in data file

12 4 Row number of first free row in data file

16 4 Next class ID to use

20 4 Next object ID to use

24 4 Status bits (all zero when server down)

Appendix C. Authorization Data File Formats 369

The object hash and user hash are each the same size. Each hash consists of 4096 buckets, numbered 1
to 4096. Each bucket consists of an eight-byte listhead - a first row in hash record number and a last row
in hash record number. Thus each hash is 8 4096-byte records long. Records 2-9 are the object hash, and
records 10-17 are the user hash.

To locate the row for a given object, the reusable server kernel hashes the object name to produce an
integer i in the range [1,4096]. It then searches object hash bucket i for the object row nominating the
object of interest. A similar hash-and-search procedure is used to find the row for a given user.

The Log File
When the authorization data sets reside on minidisk, the reusable server kernel maintains an F 256 log file
that records updates that are in progress against an authorization data set's pair of files. The records in
the log file are these:

• The log stamp row records which twin is known to be good and which twin has an update in progress.
There is only one log stamp row in the log file and it is always record 1.

• A log update row lists a set of records in either an index file or a data file. Said list of records is in the
process of being updated (rewritten).

The following tables give the organizations of these records.

Table 55. Log Stamp Row

Offset Length Usage

0 4 Last known good authorization set (1 or 2)

4 4 Set against which an update is in progress

8 4 Number of update records following in log file

Table 56. Log Update Row

Offset Length Usage

0 4 Data file (1) or index file (2) changes

4 4 Number of records being changed

8 248 Record numbers of records being changed (four bytes each)

The reusable server kernel performs log file updates, index file updates, data file updates, and file closes
in a specific order which exploits the safety properties of the minidisk file system. The order of updates to
these files is carefully controlled so that the files are always maintained on disk in a state from which the
authorization database can be recovered even if there is an I/O failure.

The recovery algorithm is simple. When the reusable server kernel starts, it reads the first record of the
log file to determine whether one of the twins was in the process of being updated when the files were
last committed to disk. If one of the twins was being updated, the log update records tell which records
were being rewritten. The reusable server kernel uses that list to restore the in-progress twin to a
consistent state, merely copying the named records from the known-good twin to the in-progress twin. If
the failing writes reflected a transaction that had already been performed against the known-good twin,
the transaction will be propagated to the in-progress twin; if the failing writes reflected a transaction that
had not yet been performed against the known-good twin, the transaction will be backed out. In this
manner the in-progress twin is restored to a consistent state.

370 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix D. Enrollment Data File Format

An enrollment file is just a V-format CMS file, one file record per enrolled .
Columns

Usage
1

A for add, D for delete
2-65

Record's key
66-end

Record's data, if column 1 is A

When it loads the file into the data space, the reusable server kernel reads the file one record at a time,
performing the operation specified in column 1. As API calls change the database, records are written to
the end of the enrollment file, describing the API calls that took place. When the enrollment set is
dropped, the file is closed with commit. If commit could not take place, the changes are backed out.

© Copyright IBM Corp. 1999, 2020 371

372 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix E. Storage Group File

The file containing storage group definitions is very simple. Each storage group is represented by one
record. The first token of the record is the storage group number in decimal. The remaining tokens of the
record are the hexadecimal virtual device numbers of the minidisks making up the storage group.

© Copyright IBM Corp. 1999, 2020 373

374 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix F. Reserved Names

The reusable server kernel uses several named CMS objects, such as storage subpools, mutexes, and the
like. Further, in some cases the reusable server kernel uses named objects managed by its own entry
points (for example, services registered through call to ssServiceBind).

The names of all CMS-managed objects used by the reusable server kernel start with the prefix BKW (case
is not significant). Server authors should avoid this prefix.

Of course, CMS itself names objects with the prefixes DMS and VM, so these prefixes should be avoided as
well.

Service Names
Specifically, the following service names are used:
Name

Object
APPC

APPC/VM line driver service name
AUTH

Authorization data manipulation service
CACHE

File cache manipulation service
CMS

CMS command execution service name
CONFIG

Configuration manipulation service
CONSOLE

Console line driver service name
CP

CP command execution service name
ENROLL

Enrollment service name
IUCV

IUCV line driver service name
MSG

MSG/SMSG line driver service name
SERVER

Server management service name
SPOOL

Spool line driver service name
SUBCOM

Subcom line driver service name
TCP

TCP/IP line driver service name
TRIE

Trie manipulation service
UDP

TCP/IP line driver service name

© Copyright IBM Corp. 1999, 2020 375

USERID
Userid mapping service name

WORKER
Userid mapping service name

Data Spaces
The reusable server kernel creates data spaces whose names are of the form BKW@n, where n is the
storage group number. It also creates data spaces whose names begin with BKW_.

TCP/IP Subtask Names
The TCP/IP line driver uses the IUCV interface to TCP/IP. When it connects to the TCP/IP service machine,
it uses subtask names that are uppercase seven-digit hexadecimal numbers prefixed by T (that is,
anything from T0000000 to TFFFFFFF).

UDP/IP Subtask Names
The UDP/IP line driver uses the IUCV interface to TCP/IP. When it connects to the TCP/IP service
machine, it uses subtask names that are uppercase seven-digit hexadecimal numbers prefixed by U (that
is, anything from U0000000 to UFFFFFFF).

376 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix G. More Detail On Reason Codes

Table 57 on page 377 gives the correspondence between numeric values of nonzero reason codes and
their symbolic names. When an entry point (for example, ssSgpStart) gives you a nonzero reason code,
use the table to interpret the reason code and devise a recovery strategy.

Table 57. Reason Codes and Recommended Actions

Numeric Symbolic Routine Action

101 ss_uid_re_not_found all Add the appropriate mapping
information to the user ID mapping file.

301 ss_aut_re_bad_count all Supply a valid option count or array
length count.

302 ss_aut_re_bad_user_length all Supply a user ID length between 1 and
64 inclusive.

303 ss_aut_re_bad_obj_length all Supply an object length between 1 and
256 inclusive.

304 ss_aut_re_bad_option all Review the options array you supplied.
One of the entries contains an
unrecognized option code.

305 ss_aut_re_bad_qual all Review the qualifiers array you
supplied. One of the entries contains a
bad qualifier.

307 ss_aut_re_exists all The class or object you are trying to
create already exists. Supply a different
class name or object name.

308 ss_aut_re_no_class all The class to which you are referring
does not exist. Supply a different class
name.

309 ss_aut_re_no_object all The object to which you are referring
does not exist. Supply a different object
name.

310 ss_aut_re_maq_fail all A call by the server kernel to CSL
routine MutexAcquire has failed.
Contact IBM support.

311 ss_aut_re_cvw_fail all A call by the server kernel to CSL
routine CondVarWait has failed.
Contact IBM support.

312 ss_aut_re_cvs_fail all A call by the server kernel to CSL
routine CondVarSignal has failed.
Contact IBM support.

313 ss_aut_re_mr_fail all A call by the server kernel to CSL
routine MutexRelease has failed.
Contact IBM support.

314 ss_aut_re_too_many ssAuthListClasses There were more classes defined than
your output array expected. Use a
larger array.

© Copyright IBM Corp. 1999, 2020 377

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

314 ss_aut_re_too_many ssAuthListObjects There were more objects defined than
your output array expected. Use a
larger array.

314 ss_aut_re_too_many ssAuthModifyClass Your call would result in exceeding the
limit of 32 operations defined per
object class. Use fewer operations.

314 ss_aut_re_too_many ssAuthQueryObject There were more user IDs defined than
your output array expected. Use a
larger array.

314 ss_aut_re_too_many ssAuthQueryRule There were more rules defined than
your output array expected. Use a
larger array.

316 ss_aut_re_no_user all The user ID you are attempting to
locate does not exist in the
authorization data. Try a different user
ID.

317 ss_aut_re_prev_io_error all A previous I/O error to the
authorization data base has taken it
offline. Try ssAuthReload.

318 ss_aut_re_prev_sync_error all A previous error in calling one of CMS's
synchronization routines (for example,
CondVarSignal) has taken the
authorization data base offline. Try
ssAuthReload.

319 ss_aut_re_read_fail all An attempt to retrieve one or more
records from one of the authorization
data files has failed. This could mean
either that an I/O error to one of the
files has occurred or that there is
insufficient storage to hold the records
retrieved. Check for both conditions
and respond accordingly.

320 ss_aut_re_write_fail all An attempt to write one or more
records to one of the authorization data
files has failed. This means an I/O error
to one of the files has occurred. Check
the file system and respond
accordingly.

321 ss_aut_re_trunc ssAuthListObjects One or more returned object names
was truncated. Use larger buffers.

321 ss_aut_re_trunc ssAuthQueryObject One or more returned user IDs was
truncated. Use larger buffers.

322 ss_aut_re_gwu_fail all An attempt to get a CMS work unit has
failed. Contact IBM support.

378 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

323 ss_aut_re_open_fail all An attempt to open one of the
authorization data files has failed.
Check the AUT_ configuration
parameters and the file system and
respond accordingly.

601 ss_sgp_re_too_many ssSgpList There were more storage groups
defined than your output array could
hold. Use a larger array.

601 ss_sgp_re_too_many ssSgpQuery There were more minidisks defined
than your output array could hold. Use
a larger array.

602 ss_sgp_re_not_found all The storage group to which you are
referring does not exist. Check the
storage group identifier you are using
(name or ID, as appropriate) and retry
the operation.

603 ss_sgp_re_out_of_storage all There is insufficient storage to hold the
control blocks necessary to represent
the storage group. Use a larger virtual
machine and try again.

604 ss_sgp_re_mx_fail all One of the server kernel's calls to the
CSL mutex routines has failed. Contact
IBM support.

607 ss_sgp_re_exists all The storage group you are attempting
to create already exists. Use a different
storage group number or delete the
storage group first.

608 ss_sgp_re_vdq_fail all The server kernel's attempt to
determine the attributes of one or more
of the minidisks defined in your storage
group has failed. You might have an
incorrect device number or perhaps the
minidisk is not linked. It is also possible
that the minidisk is not formatted at 4
KB or that it has not been reserved.
Check all of these conditions and try
again.

609 ss_sgp_re_online ssSgpDelete You cannot delete this storage group
because it is online right now. Take it
offline (use ssSgpStop) and then retry
the operation.

609 ss_sgp_re_online ssSgpStart The storage group is already started.
Stop it first.

610 ss_sgp_re_offline ssSgpStop The storage group is already offline.

610 ss_sgp_re_offline ssSgpWrite The storage group is offline and
therefore writes cannot happen. Bring
the storage group online first.

Appendix G. More Detail On Reason Codes 379

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

612 ss_sgp_re_cv_fail all One of the server kernel's calls to the
CSL condition variable routines has
failed. Contact IBM support.

615 ss_sgp_re_ds_fail all The server kernel's attempt to create
data spaces to map a storage group's
minidisks has failed. Check your virtual
machine's XCONFIG ADDRSPACE CP
directory statement to ensure that you
have not exceeded either the number
of dataspaces limit or the aggregate
storage size limit. Adjust the directory
statement as appropriate. If you cannot
adjust the directory statement,
consider starting the storage group
using DIAG X'0250' I/O instead.

616 ss_sgp_re_pool_fail all The server kernel's attempt to define
the minidisk pool (MAPMDISK
IDENTIFY) might have failed. If this
happened, there should be a return and
reason code on the virtual machine
console. Research the return and
reason code and act appropriately. This
error can also be caused by insufficient
storage. If this appears to be the cause,
try increasing your virtual machine size.

617 ss_sgp_re_map_fail all The server kernel's attempt to map
data space pages to minidisk blocks
failed. There should be a MAPMDISK
DEFINE return code on the virtual
machine console. Contact IBM support.

618 ss_sgp_re_bad_attrib all The attribute array you supplied
contains an unrecognized value. Repair
the attribute array and try again.

619 ss_sgp_re_rewrite_fail all The server kernel's attempt to rewrite
the file pointed to by configuration
parameter SGP_FILE failed. Check to
make sure the configuration value is
correct and check to make sure the
server virtual machine has the
permissions necessary to write to the
file.

620 ss_sgp_re_read_only all You asked to start the storage group
read-write but one or more of the
minidisks in the storage group is linked
read-only. Change the link and try
again, or start the storage group read-
only.

380 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

622 ss_sgp_re_out_of_range all Some scalar parameter you supplied,
such as a storage group number or the
count of elements in an array, is out of
range. Check your inputs and try again.

623 ss_sgp_re_wrong_mode all You attempted to write to the storage
group but the storage group is started
read-only. Stop the storage group and
restart it in read-write mode or refrain
from writing to the storage group.

624 ss_sgp_re_io_fail all If you started the storage group using
DIAG X'00A4', you cannot specify an
nonzero ALET value. If this is your
situation, use zero for the value of your
ALET.

It is possible your virtual machine is out
of storage. Try using a larger virtual
storage size.

Finally, it is possible that the real I/O
failed. Check with your system
programmer about whether the devices
on which your minidisks reside have
incurred some kind of failure. Be sure
to tell the system programmer how you
had started the storage group -- DIAG
X'0250', DIAG X'00A4', or VM Data
Spaces.

625 ss_sgp_re_diag_250_fail all You asked to use DIAG X'0250' as the
I/O method for your storage group but
the server kernel was unable to
initialize the DIAG X'0250'
environment. A return code of other
than 0 or 4 was returned by DIAG
X'0250' Initialize. Check the
appropriate CP documentation and
recover as necessary.

626 ss_sgp_re_too_big all The storage group you are attempting
to start is too large - there are more
than X'FFFFFFFF' 4 KB blocks in it. Use
a smaller storage group.

628 ss_sgp_re_bad_name all You are attempting to start the storage
group with an all-blank name. Supply a
non-blank name for the name of the
storage group. IBM recommends a
printable EBCDIC name for storage
groups.

629 ss_sgp_re_name_in_use all The storage group name you are trying
to assign is already in use. Try a
different storage group name.

Appendix G. More Detail On Reason Codes 381

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

701 ss_srv_re_bad_type all The service type you are supplying is
unrecognized. Check your parameter
list and try again.

702 ss_srv_re_not_found all The service you are trying to locate has
not been bound. Check your RSKMAIN
to be sure you called ssServiceBind
and make sure you supplied the correct
name in your call to ssServiceFind.

703 ss_srv_re_out_of_range all The service name length you supplied
is out of range. Change the value to be
within limits and try the API call again.

706 ss_srv_re_out_of_storage all There is not enough storage to hold the
control blocks necessary to keep a
record of the service. Increase your
virtual storage size and try the server
again.

709 ss_srv_re_exists all The service you are trying to bind
already exists. Check your program to
see whether you are calling
ssServiceBind more than once, and
check to see that you are supplying a
unique service name each time. Check
also to see whether you are trying to
use one of the names IBM uses.

801 ss_mem_re_out_of_storage all There is not enough memory in the
virtual machine or data space to satisfy
your storage request. Use a larger
virtual machine or a larger data space
or be more economical in your use of
storage.

802 ss_mem_re_bad_amount ssMemoryAllocate The storage size you supplied is out of
range. Adjust the size and try again.

802 ss_mem_re_bad_amount ssMemoryCreateDS The size of the data space you are
attempting to create is out of range.
Adjust the data space size and try
again.

802 ss_mem_re_bad_amount ssMemoryRelease The storage size you supplied is out of
range. Adjust the size and try again.

803 ss_mem_re_bad_align all The alignment request you made in
your call to ssMemoryAllocate is
unrecognized. Specify one of the
supported alignment types and try the
API call again.

804 ss_mem_re_no_subpool all The subpool you named does not exist.
Check the subpool name and try your
API call again.

382 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

805 ss_mem_re_not_alloc all The storage you are attempting to
release does not seem to be allocated.
Check the storage pointer you are
supplying and try the API call again.

807 ss_mem_re_spd_fail all The server kernel's call to SUBPOOL
DELETE failed. Contact IBM support.

808 ss_mem_re_bad_key all The storage key you provide must be in
the range [0,15]. Correct the error and
try the API call again.

809 ss_mem_re_subpool_exists all The server kernel is already managing a
subpool of this name. Change the
subpool name to one that will be
unique and try your API call again.

810 ss_mem_re_spcc_fail all The server kernel attempted to create a
VM Data Space for you but could not do
so. The virtual machine console should
be displaying the return and reason
code from CSL routine DMSSPCC.
Interpret the return and reason code,
correct the situation, and try again. The
most likely reason for failure is that you
have exceeded some limit imposed by
the virtual machine's XCONFIG
ADDRSPACE CP directory statement.

811 ss_mem_re_spla_fail all The server kernel attempted to
establish addressability to a VM Data
Space for you but could not do so. The
virtual machine console should be
displaying the return and reason code
from CSL routine DMSSPLA. Interpret
the return and reason code, correct the
situation, and try again. The most likely
reason for failure is that you have
exceeded the limit imposed by the
virtual machine's XCONFIG
ACCESSLIST CP directory statement.

901 ss_cli_re_out_of_range all The amount of data you are attempting
to put or get is out of range. Check your
parameter list and try your API call
again.

902 ss_cli_re_out_of_storage all There is insufficient storage to process
your request to put data. Increase your
virtual machine size and try your call
again.

903 ss_cli_re_bad_iam all The caller type you specified is not one
of the recognized caller types. Review
your parameter list and try again.

Appendix G. More Detail On Reason Codes 383

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

904 ss_cli_re_bad_method all The byte retrieval method you specified
is not one of the recognized retrieval
methods. Review your parameter list
and try again.

905 ss_cli_re_semc_fail all The server kernel performed a call to
CSL routine SemCreate and the call
failed. Contact IBM support.

1001 ss_enr_re_db_not_found all The enrollment data base you specified
in your call does not exist. Check your
parameter list and try your call again.

1002 ss_enr_re_rec_not_found all The enrollment record you requested
does not exist. You might have
specified the wrong record key, or you
might be looking in the wrong
enrollment data base. Check your
parameter list and try again.

1003 ss_enr_re_truncated all The enrollment data you retrieved was
truncated because your output buffer
was not large enough. Change your
program to specify a larger output
buffer and try your call again.

1005 ss_enr_re_rec_exists all The record you tried to insert already
exists. The enrollment record you
specified on your call was replaced if
you used method
ss_enr_insert_replace, otherwise it was
not replaced. Depending on your
intentions, you may need to change
your API call and try your call again.

1006 ss_enr_re_bad_length ssEnrollLoad The file name length you specified
contains an invalid value. Change your
parameter list and try your call again.

1006 ss_enr_re_bad_length ssEnrollRecordGet You specified an unacceptable length
for the buffer in which the server kernel
is to place the retrieved enrollment
data. Change your parameter list and
try your call again.

1006 ss_enr_re_bad_length ssEnrollRecordInsert You specified an unacceptable length
for the data portion of the enrollment
record you are attempting to insert.
Change your parameter list and try your
call again.

1007 ss_enr_re_bad_droptype all The parameter list you specified
contains an unrecognized value for the
drop type. Change your parameter list
and try your API call again.

384 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1008 ss_enr_re_no_storage ssEnrollLoad There is not enough storage available
to load the enrollment set. The data
space containing the records is full.
Unload the data base and reload it
using a larger data space size.

1008 ss_enr_re_no_storage ssEnrollRecordInsert There is not enough storage available
to insert the record. The data space
containing the records is full. Unload
the data base and reload it using a
larger data space size.

1009 ss_enr_re_close_fail all The file backing the VM Data Space
could not be closed. The changes made
to the enrollment data base were
backed out. Check into your SFS server
to see whether it went down or the
communication connection to it was
severed (for example, VTAM® outage).

1010 ss_enr_re_write_fail all The server kernel's attempt to write to
the enrollment file failed. Because the
file is opened at load time and kept
open, this write failure probably means
some error has happened in the SFS
server. Check with your system
administrator.

1011 ss_enr_re_bad_method all The insertion method you specified in
your parameter list was unrecognized.
Check your parameter list and try your
call again.

1012 ss_enr_re_open_fail all The server kernel's attempt to open the
enrollment file failed. The name you
specified might be incorrect, or the
server might not have the permissions
necessary to open the enrollment file
for write, or the SFS server might not be
operating. Check these things and try
your call again.

1013 ss_enr_re_gwu_fail all The server kernel was not able to get a
work unit on which to open the
enrollment file. The return and reason
code from DMSGETWU should have
appeared on the virtual machine
console. Investigate the return and
reason code and take appropriate
action.

Appendix G. More Detail On Reason Codes 385

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1014 ss_enr_re_point_fail all The server kernel was not able to move
the file pointers for the enrollment file.
The return and reason code from
DMSPOINT should have appeared on
the virtual machine console.
Investigate the return and reason code
and take appropriate action.

1015 ss_enr_re_exist_fail all The server kernel attempted to retrieve
the attributes of the enrollment file but
was not able to do so. The return and
reason code from DMSEXIST should
have appeared on the virtual machine
console. Investigate the return and
reason code and take appropriate
action.

1016 ss_enr_re_not_sfs all The server kernel determined that the
enrollment file does not reside in the
Shared File System. Move the file to an
SFS directory and try your call again.

1017 ss_enr_re_not_v all The server kernel determined that the
enrollment file does not use V records.
Change the file to V-format (use XEDIT,
perhaps, or write a pipeline) and try
your call again.

1018 ss_enr_re_dscr_fail all The server kernel was not able to
create the data space needed to hold
the enrollment records. It is possible
that some limit associated with
XCONFIG ADDRSPACE was violated;
check these limits and retry. It's also
possible that the enrollment set name
you used is already in use as a subpool
for some other purpose. If this is the
case, choose a different enrollment set
name.

1019 ss_enr_re_read_fail all The server kernel was unable to read
the enrollment file. Because the server
kernel's call to DMSOPEN worked, this
probably indicates an SFS error of some
kind. Check the health of the SFS server
and try your call again.

1020 ss_enr_re_db_exists all The enrollment set you are attempting
to load already exists. Choose a
different name and try your call again.
If you meant to reload the enrollment
set, drop the set first and then load it
again.

386 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1021 ss_enr_re_comm_fail all The server kernel's attempt to commit
the changes to the enrollment set has
failed. The most likely cause is that the
enrollment set has grown so large that
the filespace limit has been exceeded -
your SFS administrator might have to
issue MODIFY USER before your
commit will work. The return and
reason code from DMSCOMM are
displayed on the virtual machine
console. Investigate the return and
reason code and take appropriate
corrective action.

1022 ss_enr_re_not_disk all You tried to commit changes to a
transient enrollment set. Because a
transient enrollment set has no backing
file in the Shared File System, you
cannot commit its changes. Use a
permanent enrollment set instead of a
transient one.

1023 ss_enr_re_bad_kind all The set_kind parameter you specified
contains an unrecognized value.
Change your parameter list and try your
call again.

1024 ss_enr_re_new_file all The file you nominated doesn't exist, so
the server kernel created it and
initialized the enrollment set as empty.
If you did not expect this result, check
the file name you supplied and try your
call again.

1025 ss_enr_re_no_sets all There are no enrollment sets loaded. If
you didn't expect this, check your
program to see whether you forgot to
load your enrollment set or whether
you dropped the enrollment set
unknowingly.

1026 ss_enr_re_set_empty all The enrollment set you interrogated
contains no records. If you didn't
expect this, check to make sure you
loaded the correct SFS file.

1501 ss_cac_re_out_of_storage all There is insufficient storage available to
process your cache request. Increase
your virtual machine's storage size.

1502 ss_cac_re_table_replaced all You submitted a translation table n
when there was already a table known
by that number. If you did not expect
this result, check your parameter list
and the other ssCacheXlTabSet calls
your server has performed.

Appendix G. More Detail On Reason Codes 387

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1503 ss_cac_re_cache_not_found all The cache you are attempting to use
does not exist. Check to be sure the
cache was created.

1504 ss_cac_re_dscr_fail all The server kernel attempted to create a
VM Data Space to hold the cached files
but was not able to create it. The most
likely cause here is that you have
exceeded some limit set by XCONFIG
ADDRSPACE. Check your CP directory
entry, issue CP QUERY SPACES,
compare the two, and make a
configuration change if necessary.

1505 ss_cac_re_cache_exists all The cache you are trying to create
already exists. Delete the cache before
recreating it, or change your parameter
list to specify a different cache name.

1506 ss_cac_re_bad_size all The cache size you specified is out of
range. Check your parameter list
against the documentation to see
whether your cache size is in range. The
cache size is specified in pages.

1511 ss_cac_re_bad_token all The file token you supplied is not
recognized. Check your parameter list
to be sure that the token you are
providing is one that was given to you
by ssCacheFileOpen.

1512 ss_cac_re_bad_length ssCacheFileOpen The file name length you supplied is
unacceptable. Check to be sure the
length is in range. Correct your
parameter list and try your call again.

1512 ss_cac_re_bad_length ssCacheFileRead The byte count you supplied is out of
range. Check your parameter list and
try your call again.

1513 ss_cac_re_bad_count all The flag_count value you supplied is out
of range. Correct your parameter list
and try your call again.

1514 ss_cac_re_bad_esmdl all The ESM data length you supplied is
unacceptable. Check your parameter
list and make the appropriate
correction.

1515 ss_cac_re_bad_fname all One of the flag names you specified in
your flag name array is unrecognized.
Check your flag name array and try your
call again.

1516 ss_cac_re_bad_fval all One of the flag values you specified in
your flag value array is unrecognized.
Check your flag value array and try your
call again.

388 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1517 ss_cac_re_exist_fail all The server kernel's call to DMSEXIST
failed. The return and reason code from
DMSEXIST can be found on the virtual
machine console. Investigate the return
and reason code and try your call again.

1518 ss_cac_re_file_not_found all The server kernel was not able to find
the file you are trying to cache. Check
the file name to be sure it is what you
intended, and then try your call again.

1519 ss_cac_re_delete_in_progres
s

all The server kernel was not able to cache
the file you specified because the cache
you specified is in the process of being
deleted. Use a different cache to cache
the file.

1520 ss_cac_re_bad_offset all The byte offset you specified is
negative or goes beyond the last byte of
the file. Correct your parameter list.

1521 ss_cac_re_bad_table_id all The table ID you specified was zero.
Zero is a reserved table identifier.
Specify any non-zero table identifier.

1522 ss_cac_re_table_not_found all The translation table you requested in
your call to ssCacheFileOpen does
not exist. Check your parameter list to
see if you used the table ID you
intended, or check to see that you did
not omit a call to ssCacheXlTabSet.

1523 ss_cac_re_open_fail all The server kernel was not able to open
the file you wanted to cache. The return
and reason code from DMSOPEN are
displayed on the virtual machine
console. Investigate the return and
reason code and take appropriate
action.

1524 ss_cac_re_bad_recfm all The file you wanted to cache has a
record format other than F or V. The
server kernel cannot cache it. Change
the file's record format and try the call
again.

1526 ss_cac_re_out_of_storage_ds all There is not enough free storage in the
data space to cache your file. Create a
larger file cache and try your operation
again.

1527 ss_cac_re_read_fail all The server kernel was able to open the
file being cached but could not read it.
The return code and reason code from
DMSREAD appear on the virtual machine
console. Investigate the return and
reason code and try the call again.

Appendix G. More Detail On Reason Codes 389

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1528 ss_cac_re_bad_data_stream all The server kernel was looking for
record delimiters in the data of a CMS
file (SFS, minidisk, or BFS) but did not
find them. The probable cause is that
there is a run of more than 65,535
bytes without a delimiter - in other
words, some record in the file is too
long. Change the file and try again.

1601 ss_wrk_re_out_of_storage all The server kernel was unable to
allocate storage to hold information
related to your connection to a worker.
Increase your virtual storage size.

1602 ss_wrk_re_bad_count all You supplied a less-than-zero option
count. Fix your API call and try again.

1603 ss_wrk_re_bad_flag_name all One of the flag names you supplied in
your parameter list is incorrect. Inspect
the parameter list you built and try
again.

1604 ss_wrk_re_bad_flag_value all One of the flag values you supplied in
your parameter list is incorrect. Inspect
the parameter list you built and try
again.

1605 ss_wrk_re_no_class all The worker class you specified in your
call is not defined. Inspect your
parameter list and try your call again, or
inspect PROFILE RSK to see whether
you misspelled or omitted the WORKER
commands necessary to create your
worker machine class.

1606 ss_wrk_re_no_subordinates all The server kernel tried to allocate a
connection for you to a worker machine
but could not do so. Either all of the
workers are full or the non-full ones
didn't answer (autologging failed, IUCV
connections failed, or some other
indeterminate failure happened).

1607 ss_wrk_re_algtries_exceeded all The server kernel tried repeatedly to
autolog a worker machine but the
worker did not answer IUCV connection
requests. Check your workers'
configurations and try the server again.

1608 ss_wrk_re_autolog_fail all The server kernel tried to autolog a
worker machine but the XAUTOLOG
command failed. The server virtual
machine probably has insufficient CP
privilege to use the XAUTOLOG
command. Check the configuration and
try again.

390 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1609 ss_wrk_re_timer_fail all The server kernel tried to use CMS's
Timer API to set a timer but was not
able to do so. Contact IBM support.

1610 ss_wrk_re_iucvcon_fail all The server kernel tried to IUCV
CONNECT to a worker machine but
encountered some kind of permanent
error, such as the worker not having
IUCV ALLOW in its CP directory entry.
Check your worker machine
configurations and try again.

1611 ss_wrk_re_force_fail all The server kernel tried to issue the CP
FORCE command to force a worker
machine but was unable to do so. The
most likely cause is that the server
virtual machine has insufficient CP
privilege to use the FORCE command.
Check the server virtual machine's CP
directory entry and try again.

1612 ss_wrk_re_force_timeout all The server kernel issued the CP FORCE
command to force off a worker and
began waiting for the worker machine
to be logged off, but after a timeout
period the CP QUERY command
showed that the worker was still logged
on. The most likely cause is that the
worker machine is a hung user.

1613 ss_wrk_re_oper_delete all Your program attempted to allocate a
connection to a worker machine, but
while the connection was being
established an operator used the
WORKER DELETE or WORKER
DELCLASS command to delete the
worker machine. Your connection
attempt failed.

1701 ss_tri_re_bad_size all The trie size you specified is out of
range. Check your parameter list
against the documentation to see
whether your size is in range. The trie
size is specified in pages.

1702 ss_tri_re_trie_exists all You are trying to create a trie but it
already exists. Choose a different trie
name or delete the previous instance of
the trie.

1703 ss_tri_re_out_of_storage all There is not enough primary storage
(memory) to create your trie. Run your
server in a larger virtual machine.

Appendix G. More Detail On Reason Codes 391

Table 57. Reason Codes and Recommended Actions (continued)

Numeric Symbolic Routine Action

1704 ss_tri_re_dscr_fail all Creation of the trie's data space failed.
You probably have created too many
data spaces or the total size of your
data spaces would be too large. Check
your server and its XCONFIG
ADDRSPACE CP directory entry and
make any needed corrections.

1705 ss_tri_re_trie_not_found all The trie you are attempting to
manipulate does not exist. Check the
name your are using and try again.

1706 ss_tri_re_trie_busy all The server kernel was unable to acquire
your trie's lock in a reasonable period
of time. Perhaps the trie is shared
among many virtual machines and the
lock holder has abended or logged off
unexpectedly. Re-IPL your set of
servers.

1707 ss_tri_re_bad_index_len all The index you supplied has an incorrect
length. Correct the index length and try
the API call again.

1708 ss_tri_re_bad_capacity all The array capacity you supplied is
incorrect. Correct the value and try the
API call again.

1709 ss_tri_re_out_of_ds_storage all There is no room left in the trie's data
space. No more indices can be added.
Create the trie with a larger size.

392 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix H. Messages

Here is a summary of messages and recommended recovery actions.

Generally Applicable Messages
BKW0000I Operation completed OK.

Explanation

The command you issued completed normally.

System action

The system performed the action you requested.

System programmer response

Nothing.

BKW0001E Not authorized.

Explanation

You are not authorized to issue the command you
attempted.

System action

The system declined to execute the command you
supplied, responding with this error message instead.

System programmer response

The system programmer can use the AUTH command
set to grant you permission to perform the requested
operation.

BKW0002E Enter a command.

Explanation

You entered a null command.

System action

The system did nothing.

System programmer response

Enter a non-null command.

BKW0003E Syntax error.

Explanation

There is a syntax error in the command you issued.

System action

The system did nothing.

System programmer response

Refer to the syntax diagram for the command you
issued, repair its syntax, and reissue the command.

BKW0004E Unrecognized command.

Explanation

The command you entered is not recognized.

System action

The system did nothing.

System programmer response

Refer to the command documentation and submit a
recognized command.

BKW0005E Out of storage.

Explanation

Not enough virtual storage was available to perform
the operation you requested.

System action

The system backed out any partial results and
returned to the state it had just prior to your issuing
the failing command.

System programmer response

Define a larger virtual machine.

BKW0007E RC=&1 RE=&2 from routine &3

Explanation

The displayed routine produced the given return and
reason code.

System action

The system did not complete the operation you
requested.

© Copyright IBM Corp. 1999, 2020 393

System programmer response

Locate the documentation for the displayed routine
and research the return and reason code. Take
appropriate corrective action.

BKW0010E DMSQEFL returns CP_product &1
CP_level &1

Explanation

CSL routine DMSQEFL returned the displayed CP
product code and CP level code.

System action

The server kernel refuses to start because CP is too far
back-level.

System programmer response

Upgrade to a newer release of z/VM.

BKW0011E DMSQEFL returns CMS_level &1

Explanation

CSL routine DMSQEFL returned the displayed CMS
level.

System action

The server kernel refuses to start because CMS is too
far back-level.

System programmer response

Upgrade to a newer release of z/VM.

BKW0012E Insufficient VM/ESA functional
level to run RSK - returning

Explanation

The level of VM/ESA is insufficient to support
execution of the reusable server kernel.

System action

The server kernel refuses to start.

System programmer response

Upgrade to a newer release of z/VM.

BKW0013I CMS 13 detected - ensure
VM61422 is applied

Explanation

The reusable server kernel detected CMS 13. For best
results, CMS 13 must have the displayed APAR
applied. The server kernel will work if the APAR is not
applied but it might not work well.

System action

The server kernel starts anyway.

System programmer response

Install the named APAR for best results (the message
will still appear even after the APAR is applied).

CONFIG Service Messages

BKW0100E Operation now irrelevant.

Explanation

The configuration variable whose value you changed is relevant only before PROFILE RSK issues RUNSERV.
After RUNSERV, the server kernel no longer pays attention to the value of this variable.

System action

The system did nothing.

System programmer response

Change this configuration variable before RUNSERV.

Line Driver Messages

394 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKW0200E Service not found.

Explanation

The service you are attempting to manipulate does not
exist.

System action

The system did nothing.

System programmer response

Correct the name of the service, or use the SERVER
SERVICES command to determine whether the
service is known to the server kernel.

BKW0201E Subtask not found.

Explanation

The subtask you attempted to manipulate does not
exist.

System action

The system did nothing.

System programmer response

Use the line driver's LIST command to confirm the
existence of the subtask you are attempting to
manipulate. Also, confirm that you have supplied the
correct line driver name in your command. Make
appropriate corrections and resubmit the command.

BKW0202E Stop of self is prohibited.

Explanation

You asked a self-sourced line driver to stop itself. A
self-sourced driver cannot stop itself.

System action

The system did nothing.

System programmer response

You probably meant to stop some other subtask.
Correct the subtask number and try again.

BKW0203I Subtask asked to STOP.

Explanation

The line driver has sent STOP messages to the threads
running this subtask.

System action

The subtask will stop when all such threads respond
with stop acknowledgements.

System programmer response

Wait for the subtask to stop.

BKW0204I Subtask killed.

Explanation

The line driver has deleted the threads of the subtask.

System action

The server kernel has stopped a subtask in a forceful
way. Threads running the service were not given an
opportunity to complete their work normally.

System programmer response

Nothing.

BKW0205E Prefix already in use.

Explanation

The prefix you requested is already in use by this line
driver.

System action

The system did nothing.

System programmer response

Select a different prefix and reissue the command.

BKW0206E Service INIT routine failed -
RC=&1 RE=&2.

Explanation

During handling of a START command, the server
kernel drove the service's INIT routine but the INIT
routine produced a nonzero return and reason code.

System action

The system refused to start the service.

System programmer response

Use the documentation of the service itself to interpret
the return and reason code. Take appropriate
corrective actions and try the START again.

BKW0207E Start of self is prohibited.

Appendix H. Messages 395

Explanation

You asked a self-sourced line driver to start itself.

System action

The system refused to do this. The server kernel starts
self-sourced line drivers automatically as part of
server initialization.

System programmer response

You probably submitted the START command to the
wrong service or attempted to start the wrong service.
Make the appropriate corrections in your command
and issue it again.

BKW0208I Subtask is handling no clients.

Explanation

The subtask you attempted to interrogate through
QUERY is not handling any clients right now.

System action

The system did nothing.

System programmer response

None needed.

SERVER Service Messages
BKW0300I Shutdown initiated.

Explanation

You issued SERVER STOP and the server kernel is
attempting to stop the server.

System action

The line drivers are attempting to stop all services
normally. When all services are stopped shutdown of
the server will complete.

System programmer response

None needed.

BKW0301I Monitor buffer at &1.&2, &3 rows,
&4 free

Explanation

The message indicates the location in storage of the
server kernel's monitor buffer.

System action

None, other than having issued the message.

System programmer response

None needed. The CP DISPLAY command can be
used to display the monitor buffer. The MONITOR
DISPLAY command can be used to display specific
monitor rows without knowing their addresses in
memory.

USERID Service Messages
BKW0400E Reload failed - DMSOPEN or

DMSREAD RC=&1 RE=&2.

Explanation

The server kernel was not able to reload the user ID
mapping file because either DMSOPEN or DMSREAD
failed with the displayed return and reason code.

System action

The previous user ID mapping remains in effect.

System programmer response

Research the return and reason code and take the
appropriate action. Also, issue SERVER CONFIG and

look at the value of the UMAP_FILE variable and see if
it references the file you expected.

BKW0401I &1 &2 &3 maps to &4

Explanation

The user ID mapping facility maps your inputs to this
output.

System action

None, other than displaying the mapping.

396 z/VM: Reusable Server Kernel Prog. Guide & Ref.

System programmer response

If the mapping needs to be corrected, use XEDIT to
change the mapping file, then issue USERID RELOAD.

BKW0402E RC=&1 RE=&2 mapping &3 &4 &5

Explanation

ssUseridMap produced the displayed return and
reason code when interrogating the user ID map with
the inputs you provided.

System action

None, other than displaying the error message.

System programmer response

Research the return and reason code and take
appropriate corrective action. If you need to update
the user ID map, edit the mapping file and issue
USERID RELOAD.

BKW0403E Open of UMAP_FILE failed - server
will not start.

Explanation

The server kernel attempted to read the user ID
mapping file as part of its startup processing, but was
not able to read the file.

System action

Startup fails and the RUNSERV command will complete
with a nonzero return code.

System programmer response

The configuration variable UMAP_FILE is probably not
set correctly. Make sure it points to the user ID
mapping file and then try again to start the server.

BKW0404E Reload ignored some records due
to syntax errors

Explanation

The server kernel attempted to reload the user ID
mapping file, but while reading the file it found some
records having invalid syntax.

System action

The load finished, ignoring the bad records. Message
BKW0405E was issued for each bad record.

System programmer response

Use the record numbers named in message
BKW0405E to locate to locate the bad records. Repair
each one.

BKW0405E Record &1 in UMAP_FILE has bad
syntax

Explanation

The server kernel found a bad record in the user ID
mapping file. This message announces the record
number of the bad record.

System action

The server kernel skipped the bad record and
continued to load the user ID mapping file.

System programmer response

Repair the bad record.

TCP and UDP Line Driver Messages
BKW0500I A-block &1 Client &2 &3 done,

lifetime &4 msec

Explanation

A TCP or UDP subtask has finished handling the client
at the displayed port and IP address. The transaction
lasted for the displayed number of milliseconds.

System action

The system handled the client.

System programmer response

None.

BKW0501I A-block &1 Client &2 &3 done,
inbytes &4, inrate &5 KB/s

Explanation

A TCP or UDP subtask has finished handling the client
at the displayed port and IP address. The data rate
from the client was as displayed.

Appendix H. Messages 397

System action

The system handled the client.

System programmer response

None.

BKW0502I A-block &1 Client &2 &3 done,
outbytes &4, outrate &5 KB/s

Explanation

A TCP or UDP subtask has finished handling the client
at the displayed port and IP address. The data rate to
the client was as displayed.

System action

The system handled the client.

System programmer response

None.

BKW0504I A-block &1 Client &2 &3 started,
C-block &4

Explanation

A TCP or UDP subtask has begun handling the client at
the displayed port and IP address.

System action

The system is beginning to handle the client.

System programmer response

None.

BKW0505E A-block &1 errno &2 accept failed

Explanation

The TCP line driver received the displayed errno value
when it attempted to accept a connection from a
client.

System action

The line driver did not accept the connection but
continues handling work for other clients.

System programmer response

Research the errno and determine whether a
configuration change is necessary.

BKW0506E A-block &1 C-block &2 errno &3
ioctl(FIONBIO) failed

Explanation

The TCP line driver received the displayed errno value
when it attempted to set a socket to blocking I/O.

System action

The line driver closed the connection to the client but
continues handling work for other clients.

System programmer response

Research the errno and determine whether a
configuration change is necessary.

BKW0508E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(major)

Explanation

The TCP or UDP line driver was not able to create a
CMS thread when one was absolutely required.

System action

The line driver ended the subtask.

System programmer response

Research the return and reason code and take
corrective action.

BKW0509E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(minor)

Explanation

The TCP or UDP line driver was not able to create a
CMS thread when it felt one would be helpful, but
there appear to be enough suitable threads to take up
the slack.

System action

The line driver uses the threads it's already created to
handle the new client.

System programmer response

Research the return and reason code and take
corrective action.

BKW0510E A-block &1 errno &2 select()-start
failed

Explanation

The TCP line driver was not able to start a socket
select() function.

398 z/VM: Reusable Server Kernel Prog. Guide & Ref.

System action

The line driver stops the affected subtask. Clients
already connected are permitted to complete their
transactions, but no new clients are served.

System programmer response

Research the errno and take corrective action.

BKW0511E A-block &1 rsn &2
QueueReceiveBlock RC=&3 RE=&4
failed

Explanation

The TCP or UDP line driver was not able to receive a
message from a CMS queue.

System action

The line driver stops the affected subtask
immediately.

System programmer response

Re-IPL CMS. If the problem persists, contact IBM
support.

BKW0512E A-block &1 errno &2 select() failed

Explanation

The TCP line driver started a socket select() function
but the function completed with error.

System action

The line driver stops the affected subtask. Clients
already connected are permitted to complete their
transactions, but no new clients are served.

System programmer response

Research the errno and take corrective action.

BKW0513E Port number must be in range
[0..65535].

Explanation

Your START command specified an out-of-range port
value.

System action

None, other than issuing an error message.

System programmer response

Correct your START command and try again.

BKW0514E Socket count must be in range
[50..2000].

Explanation

Your START command specified an out-of-range value
for the number of sockets permitted.

System action

None, other than issuing an error message.

System programmer response

Correct your START command and try again.

BKW0515E Maximum subtask number would
be exceeded.

Explanation

The TCP or UDP line driver was not able to start a new
subtask because it has run out of subtask numbers.

System action

The subtask was not started.

System programmer response

Restart the server.

BKW0516E Creation of subtask controller
thread failed.

Explanation

The TCP or UDP line driver attempted to create a
thread to control the new subtask but was not able to
do so.

System action

The subtask was not started.

System programmer response

Re-IPL CMS. If the problem persists, contact IBM
support.

BKW0517E Creation of TCP/IP socket group
failed.

Explanation

The TCP or UDP line driver was not able to connect to
the TCP/IP service machine.

System action

The subtask was not started.

Appendix H. Messages 399

System programmer response

The usual cause here is that the name of the TCP/IP
machine was specified incorrectly. Another cause
might be that the TCP/IP machine you are attempting
to use is configured with PermittedUsersOnly but
your server is not in the permitted users list. Check
your START command and your TCP/IP configuration
carefully and try your command again.

BKW0518E Creation of listen socket failed.

Explanation

The TCP or UDP line driver was not able to create the
socket on which it will listen for connections from
clients.

System action

The subtask was not started.

System programmer response

Check your TCP/IP configuration.

BKW0519E Setting listen socket to
SO_REUSEADDR failed.

Explanation

The TCP or UDP line driver was not able to set the
listen socket to enable option SO_REUSEADDR.

System action

The subtask was not started.

System programmer response

Check your TCP/IP configuration.

BKW0520E Setting listen socket to
nonblocking failed.

Explanation

The TCP line driver was not able to set the listen
socket to non-blocking I/O.

System action

The subtask was not started.

System programmer response

Check your TCP/IP configuration.

BKW0521E bind() for listen socket failed.

Explanation

The TCP or UDP line driver was not able to bind the
port number you specified in your START command to
the IP address you specified in your START command.

System action

The subtask was not started.

System programmer response

The most likely cause is that the port number is in the
reserved port number list in your TCP/IP configuration
but the user ID in which your server is running is not
listed as one of the user IDs that can bind the reserved
port. Check your TCP/IP configuration and try again if
this was the situation. Another possible cause is that
some other server on your system has already bound
that port but did not set its listen socket to
SO_REUSEADDR. If this is the case, contact your
TCP/IP support programmer for help in locating the
offending server, or use another port number in your
own START command.

BKW0522E listen() for listen socket failed.

Explanation

The TCP line driver was not able to set the backlog
queue size for its listen socket.

System action

The subtask was not started.

System programmer response

Check your TCP/IP configuration.

BKW0523I Instance STOP requested.

Explanation

In response to your STOP command, the TCP or UDP
line driver has asked an instance thread to stop.

System action

The line driver will close the connection to the client
after the instance acknowledges the STOP request.

System programmer response

None.

BKW0524E Wait expired for STOP.

400 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Explanation

You asked the TCP or UDP line driver to stop a
subtask, so it initiated the stop and waited for the
subtask to quiesce, but the quiesce wait time ran out.

System action

The stop did not complete.

System programmer response

The stop remains pending and will complete
eventually if all of the instance threads cooperate. If
you require the subtask to stop immediately, reissue
the command using the NOW option.

BKW0525E A-block &1 C-block &2 read start
failed - errno &3

Explanation

The TCP line driver was not able to start a socket
read() for the displayed client, or the UDP line driver
was not able to start a socket recvfrom().

System action

The TCP line driver closes the connection to the client;
the UDP line driver ends the subtask.

System programmer response

Check your TCP/IP configuration.

BKW0526E A-block &1 C-block &2 write start
failed - errno &3

Explanation

The TCP line driver was not able to start a socket
write() for the displayed client, or the UDP line driver
was not able to start a socket sendto().

System action

The TCP line driver closes the connection to the client;
the UDP line driver ends the subtask.

System programmer response

Check your TCP/IP configuration.

BKW0527I A-block &1 stopped.

Explanation

You asked the TCP or UDP line driver to stop a
subtask.

System action

The subtask has stopped.

System programmer response

None.

BKW0528I A-block &1 C-block &2 stopped.

Explanation

You asked the TCP or UDP line driver to end its
relationship with a specific client.

System action

The relationship is ended.

System programmer response

None.

BKW0529I Subtask identifier is out of range.

Explanation

You asked the TCP or UDP line driver to stop a subtask
whose identifier is zero.

System action

None, other than to issue an error message.

System programmer response

Specify a nonzero subtask identifier.

BKW0530E A-block &1 C-block &2 recv failed
- errno &3

Explanation

The UDP line driver attempted to receive a datagram
using recvfrom(), but the call failed.

System action

The UDP line driver stops the subtask and displays the
errno value it encountered.

System programmer response

Research the errno value and restart the subtask.

BKW0531E A-block &1 C-block &2 sendto
failed - errno &3

Explanation

The UDP line driver attempted to send a datagram
using sendto(), but the call failed.

Appendix H. Messages 401

System action

The UDP line driver stops the subtask and displays the
errno value it encountered.

System programmer response

Research the errno value and restart the subtask.

BKW0532E No userid mapping for IP address
&1 - ignored

Explanation

The TCP or UDP line driver attempted to map an IP
address to a user ID but was not able to do so.

System action

Because the line driver's NOMAP configuration
parameter was OFF, the line driver ignored the client.

System programmer response

Update the user ID mapping file or set the line driver's
NOMAP parameter ON.

SGP Service Messages
BKW0600I No storage groups found.

Explanation

Your LIST command found no storage groups.

System action

None, other than issuing the error message.

System programmer response

None. If you expected to find storage groups, use the
SERVER CONFIG command to check the value of
configuration variable SGP_FILE. You might have
specified the wrong file name.

BKW0601E Open of SGP_FILE failed - server
will not start.

Explanation

The server kernel could not find the storage group
configuration file.

System action

The server kernel will not start and the RUNSERV
command will see a nonzero return code.

System programmer response

Check your PROFILE RSK to make sure you set
configuration variable SGP_FILE correctly.

RSK SUBCOM Messages
BKW0700E Commands cannot be issued -

server not started yet

Explanation

Your PROFILE RSK contains commands other than
CONFIG before RUNSERV.

System action

The non-CONFIG commands are ignored.

System programmer response

Reorganize your PROFILE RSK.

BKW0701E The server has already been
started

Explanation

You attempted RUNSERV more than once in your
PROFILE RSK.

System action

The extraneous RUNSERV commands are ignored.

System programmer response

Reorganize your PROFILE RSK.

BKW0702E RUNSERV failed

Explanation

The server kernel was unable to start.

402 z/VM: Reusable Server Kernel Prog. Guide & Ref.

System action

The server did not start. Other error messages were
issued to explain the reason. PROFILE RSK will see a
nonzero return code from RUNSERV.

System programmer response

Investigate the reason for the failure and take
corrective action.

AUTH Service Messages
BKW0800E The class specified already exists

Explanation

You tried to create an object class but the object class
already exists.

System action

None.

System programmer response

Choose a different name for your new object class.

BKW0801E Unable to read the authorization
files

Explanation

The server kernel could not read the authorization
database.

System action

The server kernel has disabled all calls to the
authorization API.

System programmer response

Perhaps an SFS failure or DASD failure has occurred.
Contact your system programmer.

BKW0802E Unable to write to the
authorization files

Explanation

The server kernel could not write the authorization
database.

System action

The server kernel has disabled all calls to the
authorization API.

System programmer response

Perhaps an SFS failure or DASD failure has occurred.
Contact your system programmer. When access to the
files is repaired, issue AUTH RELOAD.

BKW0803E Too many operations or options
specified

Explanation

You have exceeded the limit on options or operations
for this particular command.

System action

The command was not processed.

System programmer response

The most likely cause is that you exceeded the limit of
32 operations per object class. Reduce the number of
operations and try again.

BKW0804E The length of the object name is
out of range

Explanation

The object name you specified is too long.

System action

The command was not processed.

System programmer response

The object name must be 256 characters or less.
Reduce its length and try again.

BKW0805E The class specified does not exist

Explanation

Your command refers to an object class which does
not exist.

System action

The command was not processed.

System programmer response

Change the class name. You might also have
inadvertently loaded the wrong authorization set. Use
SERVER CONFIG to examine the names of the
authorization files.

BKW0806E The object specified already exists

Appendix H. Messages 403

Explanation

You tried to create an object but the object already
exists.

System action

The command was not processed.

System programmer response

Choose a different name for your object. You might
also have inadvertently loaded the wrong authorization
set. Use SERVER CONFIG to examine the names of
the authorization files.

BKW0807E At least one of the options
specified is unrecognized

Explanation

You supplied a command containing options that are
unrecognized.

System action

The command was not processed.

System programmer response

Check the syntax diagram for the command you
entered, make any necessary corrections, and try
again.

BKW0808E The object specified does not exist

Explanation

The object you attempted to manipulate does not
exist.

System action

The command was not processed.

System programmer response

Check the command to be sure you are referring to the
correct object name. You might also have
inadvertently loaded the wrong authorization set. Use
SERVER CONFIG to examine the names of the
authorization files.

BKW0809E The length of the userid specifed is
out of range

Explanation

You specified a user ID that is too long.

System action

The command was not processed.

System programmer response

The user ID must be 64 characters or less in length.
Change your command and try again.

BKW0810E No rules exist for the userid
specified

Explanation

You asked for a display of the rules for a given user
and object, but there were no such rules in the
authorization database.

System action

None.

System programmer response

None.

BKW0811E Unable to open the authorization
files

Explanation

The server kernel was not able to open the
authorization data files.

System action

The authorization API is disabled.

System programmer response

Perhaps an SFS failure or DASD failure has occurred.
Contact your system programmer. When access to the
files is repaired, issue AUTH RELOAD.

BKW0812E Operation limit for the class
specified has been exceeded

Explanation

You attempted to add a new operation to a class, but it
would result in exceeding the limit of 32 operations
per object class.

System action

The command was not processed.

System programmer response

Depending on your situation, perhaps a new object
class would solve your problem.

404 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKW0813E No classes exist for the match key
specified

Explanation

You asked for a list of the object classes that match
your key, but no such object classes exist.

System action

No object classes were displayed.

System programmer response

Try a different match key. You might also have
inadvertently loaded the wrong authorization set. Use
SERVER CONFIG to examine the names of the
authorization files.

BKW0814E No objects exist for the match key
specified

Explanation

You asked for a list of the objects that match your key,
but no such objects exist.

System action

No object names were displayed.

System programmer response

Try a different match key. You might also have
inadvertently loaded the wrong authorization set. Use
SERVER CONFIG to examine the names of the
authorization files.

BKW0815E No userids exist for the object
specified

Explanation

You asked for a list of the user IDs for which there
exist rules for the specified object, but there are no
rules for the specified object.

System action

No user IDs were displayed.

System programmer response

You might have inadvertently loaded the wrong
authorization set. Use SERVER CONFIG to examine
the names of the authorization files.

BKW0816E No rules exist for the userid
specified

Explanation

You asked for the rule for the specified user ID and
object, but there is no such rule.

System action

No rule is displayed.

System programmer response

You might have inadvertently loaded the wrong
authorization set. Use SERVER CONFIG to examine
the names of the authorization files.

BKW0817E Open of authorization data failed -
server will not start.

Explanation

The server kernel attempted to open the authorization
files as part of server startup, but the open failed.

System action

The server will not start and RUNSERV will be given a
nonzero return code.

System programmer response

Correct PROFILE RSK and try again.

CP Service Messages
BKW0900I RC=&1 from CP.

Explanation

CP produced the displayed return code when it
processed your command.

System action

The command was executed.

System programmer response

Investigate the return code and take appropriate
action.

BKW0901E CP response was truncated.

Appendix H. Messages 405

Explanation

The server kernel passed your command to CP, and CP
executed the command, but the response was too long
for the server kernel to capture.

System action

The command was executed, but some of its response
was not displayed.

System programmer response

Use the displayed portion of the response to
determine whether correct results were obtained.

BKW0902E CP command was too long.

Explanation

The CP command you attemped to execute was too
long.

System action

The command was not executed.

System programmer response

The length limit is 240 characters. Shorten the
command and try again.

CMS Service Messages
BKW1000I RC=&1 from CMS.

Explanation

CMS produced the displayed return code when it
processed your command.

System action

The command was executed.

System programmer response

Investigate the return code and take appropriate
action.

BKW1001E RC=&1 RE=&2 acquiring CMS
mutex.

Explanation

The server kernel was not able to acquire the mutex it
needs to pass commands to CMS.

System action

The CMS command was not executed.

System programmer response

Contact IBM support.

MSG Line Driver Messages

BKW1100E No userid mapping for user &1 at &2 - message ignored

Explanation

The MSG line driver used ssUseridMap to map the message's origin user ID and node into a local user ID, but
ssUseridMap was not able to perform a mapping because no applicable entry was found in the user ID
mapping file.

System action

The MSG line driver ignored the message.

System programmer response

Adjust the user ID mapping file if necessary, or set configuration parameter MSG_NOMAP to ON so as to let the
MSG driver accept the message anyway.

SPOOL Line Driver Messages

406 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKW1200E (file &1) DIAG 14 (order) failed -
RC=&2 - file held

Explanation

The SPOOL line driver attempted to use DIAG X'0014'
to move the displayed spool file to the front of the
reader queue, but it was unable to do so.

System action

The SPOOL driver placed the file in USER HOLD state.

System programmer response

The DIAG X'0014' return code appears in the message
text. Investigate the return code and take appropriate
action.

BKW1201E (file &1) DIAG 14 (select next)
failed - RC=&2 - file held

Explanation

The SPOOL line driver attempted to use DIAG X'0014'
to select the next file in the reader queue, but it was
unable to do so.

System action

The SPOOL driver placed the file in USER HOLD state.

System programmer response

The DIAG X'0014' return code appears in the message
text. Investigate the return code and take appropriate
action.

BKW1202E (file &1) Unrecognized spool file
format - file held

Explanation

The SPOOL line driver did not recognize the format of
the displayed spool file.

System action

The SPOOL driver placed the file in USER HOLD state.

System programmer response

The file is probably not one that the server kernel is
prepared to handle. Transfer it out of the server's
reader queue, locate the sender, and find out what his
intention was.

BKW1203E (file &1) DIAG 14 (read SPLINK)
failed - RC=&2 - file held

Explanation

The SPOOL line driver attempted to use DIAG X'0014'
to read the next buffer of spool file data, but it was
unable to do so.

System action

The SPOOL driver placed the file in USER HOLD state.

System programmer response

The DIAG X'0014' return code appears in the message
text. Investigate the return code and take appropriate
action.

BKW1204E (file &1) No userid mapping for
user &1 at &2 - file held

Explanation

The SPOOL line driver used ssUseridMap to map the
spool file's origin user ID and node into a local userid,
but ssUseridMap was not able to perform a mapping
because no applicable entry was found in the user ID
mapping file.

System action

The SPOOL driver placed the file in USER HOLD status.

System programmer response

Adjust the user ID mapping file if necessary, or set
configuration parameter SPL_NOMAP to ON so as to let
the SPOOL driver accept the file anyway.

BKW1205E Punch via DIAG A8 failed - RC=&1

Explanation

The SPOOL driver attempted to punch a response
through DIAG X'00A8' but was not able to do so.

System action

The response was not sent.

System programmer response

The return code from DIAG X'00A8' is displayed in the
message. Investigate the return code and take
appropriate action. The most likely cause is that spool
space is full.

BKW1206E Could not encode instance data
stream

Explanation

The service in which the response originated used the
correct encoding procedure to generate a record-

Appendix H. Messages 407

oriented response for its client, but the response
contains a record longer than 65,535 bytes.

System action

The response was not sent to the client.

System programmer response

This is a server defect, not an IBM defect. Contact the
server author.

BKW1207E (file &1) Unrecognized spool file
format - file transferred to &2

Explanation

The SPOOL line driver did not recognize the format of
the displayed spool file.

System action

The SPOOL driver transferred the file to the named
user ID.

System programmer response

The file is probably not one that the server kernel is
prepared to handle. Locate the sender and find out
what his intention was.

Enrollment API Messages

BKW1300E Enrollment set &1, record &2 skipped

Explanation

The server kernel encountered an unrecognizable record in the enrollment data file as it was loading the file into
the data space. It skipped the record.

System action

The record was skipped, but loading of subsequent records continued.

System programmer response

Unload the enrollment set and examine the enrollment file with XEDIT. Repair the record so that it conforms to
the format specified in the enrollment file appendix of this book.

MONITOR Service Messages
BKW1400E Matching monitor row not found.

Explanation

You asked the MONITOR service to display the
monitor rows matching the tokens you specified, but
no such monitor row exists.

System action

None.

System programmer response

None.

BKW1401E DIAG DC RC &1 starting
APPLDATA monitoring

Explanation

The server kernel tried to establish a CP APPLDATA
buffer but was not able to do so. DIAG X'00DC'
returned the displayed return code.

System action

CP will not collect the server virtual machine's
APPLDATA. The server virtual machine will run
normally.

System programmer response

If you want CP to collect the server virtual machine's
APPLDATA, make sure OPTION APPLMON is enabled
in the server virtual machine's CP directory entry.

BKW1402E Monitor adjusted to &1 kernel
rows and &2 bytes user data

408 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Explanation

The server kernel tried to set up the monitor buffer
according to the configuration you specified, but the
resulting buffer ended up exceeding CP's limit on the
size of a monitor buffer.

System action

The server kernel resized the monitor buffer and
displayed the actual buffer configuration in the
message text.

System programmer response

None.

BKW1403I No free monitor row for &1

Explanation

Some operator command or API call caused the server
kernel to attempt to allocate another monitor row, but
the monitor buffer cannot accommodate any more
monitor rows.

System action

The server kernel will not accumulate monitor data for
the displayed component, but operation of the server
continues.

System programmer response

If possible, increase the number of monitor rows.

CACHE Service Messages

BKW1500E No file caches found.

Explanation

You asked the CACHE service to display a list of the file caches it is managing, but it is managing no file caches.

System action

None.

System programmer response

None.

IUCV Line Driver Messages
BKW1600I Instance STOP requested.

Explanation

The IUCV line driver has asked an instance thread to
STOP.

System action

The server kernel will sever the path to the client after
the instance thread acknowledges the STOP request.

System programmer response

None.

BKW1601E A-block &1 rsn &2
QueueReceiveBlock RC=&3 RE=&4
failed

Explanation

The thread controlling an IUCV subtask detected the
displayed return and reason code when it attempted
to receive a message from its CMS queue.

System action

The server kernel terminates the subtask.

System programmer response

Research the displayed return and reason code and
take appropriate corrective action.

BKW1602I A-block &1 Client &2 started, C-
block &3

Explanation

The IUCV line driver has accepted a connection from a
client.

Appendix H. Messages 409

System action

The server kernel handles the client.

System programmer response

None.

BKW1603I A-block &1 Client &2 done,
lifetime &3 msec

Explanation

The IUCV line driver was handling a client, and the
connection to the client has ended. The connection
lasted for the displayed number of milliseconds.

System action

The server kernel cleans up and prepares to handle
another client.

System programmer response

None.

BKW1604I A-block &1 Client &2 done, inbytes
&3, inrate &4 KB/s

Explanation

The IUCV line driver was handling a client, and the
connection to the client has ended. The server
experienced the displayed input byte count and input
data rate.

System action

Nothing.

System programmer response

None.

BKW1605I A-block &1 Client &2 done,
outbytes &3, outrate &4 KB/s

Explanation

The IUCV line driver was handling a client, and the
connection to the client has ended. The server
experienced the displayed output byte count and
output data rate.

System action

Nothing.

System programmer response

None.

BKW1606E Wait expired for STOP.

Explanation

You issued a STOP command to the IUCV line driver,
and it attempted to stop the subtask gracefully, but
the wait expired before the graceful stop completed.

System action

The IUCV line driver continues to wait for the subtask
to stop normally.

System programmer response

To finish the stop at a later time, reissue the STOP
command.

BKW1607E Client count must be greater than
zero.

Explanation

You issued an IUCV START command but the client
count was zero.

System action

Nothing, except to issue this message.

System programmer response

Specify a nonzero client count.

BKW1608E Unable to HNDIUCV SET.

Explanation

You issued an IUCV START command but the IUCV
line driver was not able to identify the needed
HNDIUCV exit.

System action

The subtask was not started.

System programmer response

You probably inadvertently duplicated an exit name.
Try another exit name.

BKW1609E Unable to create controlling
thread.

Explanation

You issued an IUCV START command but the IUCV
line driver was not able to create a CMS thread to
control the subtask.

410 z/VM: Reusable Server Kernel Prog. Guide & Ref.

System action

The subtask was not started.

System programmer response

Contact IBM support.

BKW1610E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(major)

Explanation

A client connected to the server through the IUCV line
driver but the line driver was not able to create a
thread to run on behalf of the client.

System action

The subtask is terminated.

System programmer response

Contact IBM support.

BKW1611E A-block &1 C-block &2
ThreadCreate RC=&3 RE=&4 failed
(minor)

Explanation

A client connected to the server through the IUCV line
driver but the line driver was not able to create a
thread to run on behalf of the client.

System action

The client will be served by another thread, as soon as
said other thread becomes available.

System programmer response

None.

BKW1612E A-block &1 C-block &2 IUCV SEND
IPRCODE &3 - severing

Explanation

The IUCV line driver encountered the displayed
IPRCODE when it attempted to send data to a client
using IUCV SEND.

System action

The IUCV line driver severs the connection to the
client.

System programmer response

Research the IPRCODE and take appropriate
corrective action.

BKW1613E No userid mapping for userid &1 -
severing

Explanation

The IUCV line driver was unable to map the client's VM
user ID.

System action

Because NOMAP_IUCV was set OFF, the server kernel
severed the connection.

System programmer response

Update the user ID mapping file or set NOMAP_IUCV to
ON.

APPC Line Driver Messages
BKW1700E (Resource &1) CMSIUCV CONNECT

to *IDENT RC=&2

Explanation

The APPC line driver encountered the displayed return
code when attempting to connect to *IDENT to begin
managing the displayed APPC/VM resource.

System action

The APPC START command failed.

System programmer response

Using the CP QUERY RESOURCE command to
determine whether some other virtual machine is

already managing the resource. If so, resolve the
conflict. If not, contact your system programmer.

BKW1701E (Resource &1) Unexpected IUCV
interrupt, IPTYPE=&2

Explanation

The server kernel encountered the displayed external
interrupt type while managing an APPC/VM
conversation and was not expecting such an external
interrupt.

System action

The conversation was severed.

Appendix H. Messages 411

System programmer response

Contact IBM support.

BKW1702E Unable to identify APPC/VM
resource.

Explanation

The server kernel was not able to begin managing an
APPC/VM resource.

System action

The APPC START command failed.

System programmer response

This message is issued in conjunction with some other
message that tells what kind of failure was
encountered. Refer to the other message for more
information.

BKW1703E No userid mapping for LU &1,
userid &2 - severing

Explanation

The attempt to pass the displayed user ID and LU
name through the user ID mapping file failed, and
NOMAP_APPC was OFF.

System action

The conversation was severed.

System programmer response

Update the user ID mapping file or set NOMAP_APPC
ON.

BKW1704I A-block &1 Client &2 &3 started,
C-block &4

Explanation

The APPC line driver has accepted a connection from a
client.

System action

The server kernel handles the client.

System programmer response

None.

BKW1705I A-block &1 Client &2 &3 done,
lifetime &4 msec

Explanation

The APPC line driver was handling a client, and the
connection to the client has ended. The connection
lasted for the displayed number of milliseconds.

System action

The server kernel cleans up and prepares to handle
another client.

System programmer response

None.

BKW1706I A-block &1 Client &2 &3 done,
inbytes &4, inrate &5 KB/s

Explanation

The APPC line driver was handling a client, and the
connection to the client has ended. The server
experienced the displayed input byte count and input
data rate.

System action

Nothing.

System programmer response

None.

BKW1707I A-block &1 Client &2 &3 done,
outbytes &4, outrate &5 KB/s

Explanation

The APPC line driver was handling a client, and the
connection to the client has ended. The server
experienced the displayed output byte count and
output data rate.

System action

Nothing.

System programmer response

None.

Worker API Messages

412 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKW1800E Worker machine is already in the
specified class.

Explanation

You attempted to add a worker machine to a given
worker class, but the worker already belongs to that
class.

System action

Nothing.

System programmer response

Probably nothing. If you are attempting to increase the
worker's capacity, delete it first and then add it again.

BKW1801E Worker machine not found.

Explanation

You attempted to delete a worker machine but it does
not seem to belong to any class.

System action

None.

System programmer response

Check the command and try again.

BKW1802E Worker class not found.

Explanation

You attempted to operate on a specific worker class,
but the class doesn't seem to exist.

System action

None.

System programmer response

Check the command and try again.

BKW1803E No worker classes defined.

Explanation

You attempted to display information about the
worker machine configuration, but there are no worker
classes defined.

System action

None.

System programmer response

Confirm that you did in fact issue the WORKER ADD
commands necessary to create your worker pools.

BKW1804E No worker connections found.

Explanation

You attempted to use the STATUS command to see
information about active connections to worker
machines, but there currently are no such
connections.

System action

None.

System programmer response

None.

BKW1805E No worker machines found.

Explanation

You attempted to display information about a set of
worker machines, but there are no such worker
machines defined.

System action

None.

System programmer response

None.

BKW1806E P-block &1 IUCV SEND IPRCODE
&3 - severing

Explanation

The server kernel encountered the displayed IPRCODE
when attempting to use IUCV to send information to a
worker machine.

System action

The server kernel severs the IUCV connection and
informs the instance accordingly.

System programmer response

Investigate the IPRCODE and determine whether a
configuration change is appropriate.

Appendix H. Messages 413

Trie Messages

BKW1900E No tries found.

Explanation

You asked to see a list of existing tries, but no tries exist.

System action

Nothing.

System programmer response

If you were expecting tries, check to see whether their creation was attempted, and if so, whether it succeeded
or failed.

414 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix I. Language Bindings

This appendix documents the language bindings used for PL/X and assembler.

Assembler Language Bindings
All of these binding macros invoke the VMASMMAX macro to ease the allocation of storage for parameter
lists. For more information on VMASMMAX, see z/VM: CMS Application Multitasking.

Anchor Bindings (SSASMANC MACRO)

 MACRO SSA00010
 SSASMANC &WEAK= SSA00020
 AGO .@ASMAN1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel anchor bindings * SSA00070
.* * SSA00080
.* FUNCTION - Defines the anchor constants and dsects * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR74PVM SSA00220
.** SSA00230
.@ASMAN1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMAN2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMAN2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMAN3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMAN3 ANOP SSA00330
-- SSA00340
* Return and reason codes for anchor functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_ANC_RC_SUCCESS EQU 0 SSA00400
SS_ANC_RC_WARNING EQU 4 SSA00410
SS_ANC_RC_ERROR EQU 8 SSA00420
SS_ANC_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_ANC_RE_SUCCESS EQU 0 SSA00460
-- SSA00470
* Constants for anchor functions * SSA00480
-- SSA00490
 SPACE 1 SSA00500
-- SSA00510
* Definitions for anchor functions * SSA00520
-- SSA00530
 SPACE 1 SSA00540
-- SSA00550
* Declaration for ssAnchorSet * SSA00560
-- SSA00570
 SPACE 1 SSA00580
 &$XXTRN BKWAST SSA00590
SSANCHORSET EQU BKWAST SSA00600

© Copyright IBM Corp. 1999, 2020 415

 SPACE 1 SSA00610
BKWAST_PLIST DSECT SSA00620
BKWAST_PLIST_RC DS A * return code SSA00630
BKWAST_PLIST_RE DS A * reason code SSA00640
BKWAST_PLIST_AV DS A * anchor value SSA00650
BKWAST_PLIST_LENGTH EQU *-BKWAST_PLIST SSA00660
 VMASMMAX SSA00670
 SPACE 1 SSA00680
-- SSA00690
* Declaration for ssAnchorGet * SSA00700
-- SSA00710
 SPACE 1 SSA00720
 &$XXTRN BKWAGT SSA00730
SSANCHORGET EQU BKWAGT SSA00740
 SPACE 1 SSA00750
BKWAGT_PLIST DSECT SSA00760
BKWAGT_PLIST_RC DS A * return code SSA00770
BKWAGT_PLIST_RE DS A * reason code SSA00780
BKWAGT_PLIST_AV DS A * anchor value SSA00790
BKWAGT_PLIST_MB DS A * monitor buffer SSA00800
BKWAGT_PLIST_MBL DS A * monitor buffer length SSA00810
BKWAGT_PLIST_LENGTH EQU *-BKWAGT_PLIST SSA00820
 VMASMMAX SSA00830
-- SSA00840
* End of declarations * SSA00850
-- SSA00860
 EJECT SSA00870
 POP PRINT SSA00880
 MEND SSA00890

Authorization Bindings (SSASMAUT MACRO)

 MACRO SSA00010
 SSASMAUT &WEAK= SSA00020
 AGO .@ASMAU1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel authorization bindings * SSA00070
.* * SSA00080
.* FUNCTION - Defines the authorization constants and dsects * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR74PVM SSA00220
.** SSA00230
.@ASMAU1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMAU2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMAU2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMAU3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMAU3 ANOP SSA00330
-- SSA00340
* Return and reason codes for authorization functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_AUT_RC_SUCCESS EQU 0 SSA00400
SS_AUT_RC_WARNING EQU 4 SSA00410
SS_AUT_RC_ERROR EQU 8 SSA00420
SS_AUT_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_AUT_RE_SUCCESS EQU 0 SSA00460
SS_AUT_RE_BAD_COUNT EQU 301 SSA00470

416 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SS_AUT_RE_BAD_USER_LENGTH EQU 302 SSA00480
SS_AUT_RE_BAD_OBJ_LENGTH EQU 303 SSA00490
SS_AUT_RE_BAD_OPTION EQU 304 SSA00500
SS_AUT_RE_BAD_QUAL EQU 305 SSA00510
SS_AUT_RE_BAD_USE EQU 306 SSA00520
SS_AUT_RE_EXISTS EQU 307 SSA00530
SS_AUT_RE_NO_CLASS EQU 308 SSA00540
SS_AUT_RE_NO_OBJECT EQU 309 SSA00550
SS_AUT_RE_MAQ_FAIL EQU 310 SSA00560
SS_AUT_RE_CVW_FAIL EQU 311 SSA00570
SS_AUT_RE_CVS_FAIL EQU 312 SSA00580
SS_AUT_RE_MR_FAIL EQU 313 SSA00590
SS_AUT_RE_TOO_MANY EQU 314 SSA00600
SS_AUT_RE_OUT_OF_STORAGE EQU 315 SSA00610
SS_AUT_RE_NO_USER EQU 316 SSA00620
SS_AUT_RE_PREV_IO_ERROR EQU 317 SSA00630
SS_AUT_RE_PREV_SYNC_ERROR EQU 318 SSA00640
SS_AUT_RE_READ_FAIL EQU 319 SSA00650
SS_AUT_RE_WRITE_FAIL EQU 320 SSA00660
SS_AUT_RE_TRUNC EQU 321 SSA00670
SS_AUT_RE_GWU_FAIL EQU 322 SSA00680
SS_AUT_RE_OPEN_FAIL EQU 323 SSA00690
SS_AUT_RE_BAD_CACHE EQU 324 SSA00700
SS_AUT_RE_BAD_FREE EQU 325 SSA00710
SS_AUT_RE_BAD_OP EQU 326 SSA00720
* SSA00730
-- SSA00740
* Constants for authorization functions * SSA00750
-- SSA00760
 SPACE 1 SSA00770
-- SSA00780
* Return values from ssAuthTestOperations * SSA00790
* and ssAuthPermitUser * SSA00800
-- SSA00810
SS_AUT_OP_PERMITTED EQU 0 SSA00820
SS_AUT_OP_NOT_PERMITTED EQU 1 SSA00830
SS_AUT_OP_NOT_DEFINED EQU 2 SSA00840
SS_AUT_OP_NO_CHANGE EQU 3 SSA00850
* SSA00860
-- SSA00870
* Qualifiers for ssAuthPermitUser * SSA00880
-- SSA00890
SS_AUT_ADD_OPERATION EQU 0 SSA00900
SS_AUT_REMOVE_OPERATION EQU 1 SSA00910
* SSA00920
-- SSA00930
* Use arrays in ssAuthPermitUser * SSA00940
-- SSA00950
SS_AUT_USE_ARRAYS EQU 0 SSA00960
SS_AUT_DELETE_ALL EQU 1 SSA00970
SS_AUT_ADD_ALL EQU 2 SSA00980
* SSA00990
-- SSA01000
* Qualifiers for ssAuthDeleteObject * SSA01010
-- SSA01020
SS_AUT_RULES_ONLY EQU 0 SSA01030
SS_AUT_RULES_AND_OBJECT EQU 1 SSA01040
* SSA01050
-- SSA01060
* Qualifiers for ssAuthDeleteUser * SSA01070
-- SSA01080
SS_AUT_SPECIFIC_CLASS EQU 0 SSA01090
SS_AUT_ALL_CLASSES EQU 1 SSA01100
* SSA01110
-- SSA01120
* Qualifiers for ssAuthDeleteClass * SSA01130
-- SSA01140
SS_AUT_OBJECTS_ONLY EQU 0 SSA01150
SS_AUT_OBJECTS_AND_CLASS EQU 1 SSA01160
* SSA01170
-- SSA01180
* Definitions for authorization functions * SSA01190
-- SSA01200
 SPACE 1 SSA01210
-- SSA01220
* Operations on classes * SSA01230
-- SSA01240
* SSA01250
* create class SSA01260
* SSA01270
 SPACE 1 SSA01280
 &$XXTRN BKWUCC SSA01290

Appendix I. Language Bindings 417

SSAUTHCREATECLASS EQU BKWUCC SSA01300
 SPACE 1 SSA01310
BKWUCC_PLIST DSECT SSA01320
BKWUCC_PLIST_RC DS A * return code SSA01330
BKWUCC_PLIST_RE DS A * reason code SSA01340
BKWUCC_PLIST_CID DS A * class identifier SSA01350
BKWUCC_PLIST_OC DS A * operation count SSA01360
BKWUCC_PLIST_OA DS A * operation array SSA01370
BKWUCC_PLIST_LENGTH EQU *-BKWUCC_PLIST SSA01380
 VMASMMAX SSA01390
 SPACE 1 SSA01400
* SSA01410
* modify class SSA01420
* SSA01430
 SPACE 1 SSA01440
 &$XXTRN BKWUMC SSA01450
SSAUTHMODIFYCLASS EQU BKWUMC SSA01460
 SPACE 1 SSA01470
BKWUMC_PLIST DSECT SSA01480
BKWUMC_PLIST_RC DS A * return code SSA01490
BKWUMC_PLIST_RE DS A * reason code SSA01500
BKWUMC_PLIST_CID DS A * class identifier SSA01510
BKWUMC_PLIST_OC DS A * operation count SSA01520
BKWUMC_PLIST_OA DS A * operation array SSA01530
BKWUMC_PLIST_LENGTH EQU *-BKWUMC_PLIST SSA01540
 VMASMMAX SSA01550
 SPACE 1 SSA01560
* SSA01570
* list classes SSA01580
* SSA01590
 SPACE 1 SSA01600
 &$XXTRN BKWULC SSA01610
SSAUTHLISTCLASSES EQU BKWULC SSA01620
 SPACE 1 SSA01630
BKWULC_PLIST DSECT SSA01640
BKWULC_PLIST_RC DS A * return code SSA01650
BKWULC_PLIST_RE DS A * reason code SSA01660
BKWULC_PLIST_MK DS A * match key SSA01670
BKWULC_PLIST_MKL DS A * match key length SSA01680
BKWULC_PLIST_NE DS A * number expected SSA01690
BKWULC_PLIST_OB DS A * output buffer SSA01700
BKWULC_PLIST_NR DS A * number returned SSA01710
BKWULC_PLIST_LENGTH EQU *-BKWULC_PLIST SSA01720
 VMASMMAX SSA01730
 SPACE 1 SSA01740
* SSA01750
* delete class SSA01760
* SSA01770
 SPACE 1 SSA01780
 &$XXTRN BKWUDC SSA01790
SSAUTHDELETECLASS EQU BKWUDC SSA01800
 SPACE 1 SSA01810
BKWUDC_PLIST DSECT SSA01820
BKWUDC_PLIST_RC DS A * return code SSA01830
BKWUDC_PLIST_RE DS A * reason code SSA01840
BKWUDC_PLIST_CID DS A * class identifier SSA01850
BKWUDC_PLIST_OC DS A * option count SSA01860
BKWUDC_PLIST_OA DS A * option array SSA01870
BKWUDC_PLIST_LENGTH EQU *-BKWUDC_PLIST SSA01880
 VMASMMAX SSA01890
-- SSA01900
* Operations on objects * SSA01910
-- SSA01920
* SSA01930
* create object SSA01940
* SSA01950
 SPACE 1 SSA01960
 &$XXTRN BKWUCO SSA01970
SSAUTHCREATEOBJECT EQU BKWUCO SSA01980
 SPACE 1 SSA01990
BKWUCO_PLIST DSECT SSA02000
BKWUCO_PLIST_RC DS A * return code SSA02010
BKWUCO_PLIST_RE DS A * reason code SSA02020
BKWUCO_PLIST_ON DS A * object name SSA02030
BKWUCO_PLIST_ONL DS A * object name length SSA02040
BKWUCO_PLIST_CID DS A * object class SSA02050
BKWUCO_PLIST_LENGTH EQU *-BKWUCO_PLIST SSA02060
 VMASMMAX SSA02070
 SPACE 1 SSA02080
* SSA02090
* list objects in class SSA02100
* SSA02110

418 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 SPACE 1 SSA02120
 &$XXTRN BKWULO SSA02130
SSAUTHLISTOBJECTS EQU BKWULO SSA02140
 SPACE 1 SSA02150
BKWULO_PLIST DSECT SSA02160
BKWULO_PLIST_RC DS A * return code SSA02170
BKWULO_PLIST_RE DS A * reason code SSA02180
BKWULO_PLIST_CID DS A * class identifier SSA02190
BKWULO_PLIST_MK DS A * match key SSA02200
BKWULO_PLIST_MKL DS A * match key length SSA02210
BKWULO_PLIST_NE DS A * number expected SSA02220
BKWULO_PLIST_BP DS A * buffer pointers SSA02230
BKWULO_PLIST_BS DS A * buffer sizes SSA02240
BKWULO_PLIST_RL DS A * returned lengths SSA02250
BKWULO_PLIST_NR DS A * number returned SSA02260
BKWULO_PLIST_LENGTH EQU *-BKWULO_PLIST SSA02270
 VMASMMAX SSA02280
 SPACE 1 SSA02290
* SSA02300
* query an object SSA02310
* SSA02320
 SPACE 1 SSA02330
 &$XXTRN BKWUQO SSA02340
SSAUTHQUERYOBJECT EQU BKWUQO SSA02350
 SPACE 1 SSA02360
BKWUQO_PLIST DSECT SSA02370
BKWUQO_PLIST_RC DS A * return code SSA02380
BKWUQO_PLIST_RE DS A * reason code SSA02390
BKWUQO_PLIST_ON DS A * object name SSA02400
BKWUQO_PLIST_ONL DS A * object name length SSA02410
BKWUQO_PLIST_CID DS A * class identifier SSA02420
BKWUQO_PLIST_UX DS A * userids expected SSA02430
BKWUQO_PLIST_UBP DS A * userid buf pointers SSA02440
BKWUQO_PLIST_UBS DS A * userid buf sizes SSA02450
BKWUQO_PLIST_UL DS A * userid lengths SSA02460
BKWUQO_PLIST_UR DS A * userids returned SSA02470
BKWUQO_PLIST_LENGTH EQU *-BKWUQO_PLIST SSA02480
 VMASMMAX SSA02490
 SPACE 1 SSA02500
* SSA02510
* delete an object SSA02520
* SSA02530
 SPACE 1 SSA02540
 &$XXTRN BKWUDO SSA02550
SSAUTHDELETEOBJECT EQU BKWUDO SSA02560
 SPACE 1 SSA02570
BKWUDO_PLIST DSECT SSA02580
BKWUDO_PLIST_RC DS A * return code SSA02590
BKWUDO_PLIST_RE DS A * reason code SSA02600
BKWUDO_PLIST_ON DS A * object name SSA02610
BKWUDO_PLIST_ONL DS A * its length SSA02620
BKWUDO_PLIST_OC DS A * option count SSA02630
BKWUDO_PLIST_OA DS A * option array SSA02640
BKWUDO_PLIST_LENGTH EQU *-BKWUDO_PLIST SSA02650
 VMASMMAX SSA02660
 SPACE 1 SSA02670
-- SSA02680
* Operations on users * SSA02690
-- SSA02700
* SSA02710
* permit user SSA02720
* SSA02730
 SPACE 1 SSA02740
 &$XXTRN BKWUPU SSA02750
SSAUTHPERMITUSER EQU BKWUPU SSA02760
 SPACE 1 SSA02770
BKWUPU_PLIST DSECT SSA02780
BKWUPU_PLIST_RC DS A * return code SSA02790
BKWUPU_PLIST_RE DS A * reason code SSA02800
BKWUPU_PLIST_UN DS A * user name SSA02810
BKWUPU_PLIST_UNL DS A * its length SSA02820
BKWUPU_PLIST_ON DS A * object name SSA02830
BKWUPU_PLIST_ONL DS A * its length SSA02840
BKWUPU_PLIST_UA DS A * use arrays? SSA02850
BKWUPU_PLIST_OC DS A * operation count SSA02860
BKWUPU_PLIST_OA DS A * operation array SSA02870
BKWUPU_PLIST_OQ DS A * operation qualifiers SSA02880
BKWUPU_PLIST_OR DS A * operation results SSA02890
BKWUPU_PLIST_LENGTH EQU *-BKWUPU_PLIST SSA02900
 VMASMMAX SSA02910
 SPACE 1 SSA02920
* SSA02930

Appendix I. Language Bindings 419

* query specific rule SSA02940
* SSA02950
 &$XXTRN BKWUQR SSA02960
SSAUTHQUERYRULE EQU BKWUQR SSA02970
 SPACE 1 SSA02980
BKWUQR_PLIST DSECT SSA02990
BKWUQR_PLIST_RC DS A * return code SSA03000
BKWUQR_PLIST_RE DS A * reason code SSA03010
BKWUQR_PLIST_UN DS A * user name SSA03020
BKWUQR_PLIST_UNL DS A * its length SSA03030
BKWUQR_PLIST_ON DS A * object name SSA03040
BKWUQR_PLIST_ONL DS A * its length SSA03050
BKWUQR_PLIST_OE DS A * ops expected SSA03060
BKWUQR_PLIST_OA DS A * operation array SSA03070
BKWUQR_PLIST_OR DS A * ops returned SSA03080
BKWUQR_PLIST_LENGTH EQU *-BKWUQR_PLIST SSA03090
 VMASMMAX SSA03100
 SPACE 1 SSA03110
* SSA03120
* test operations SSA03130
* SSA03140
 SPACE 1 SSA03150
 &$XXTRN BKWUTO SSA03160
SSAUTHTESTOPERATIONS EQU BKWUTO SSA03170
 SPACE 1 SSA03180
BKWUTO_PLIST DSECT SSA03190
BKWUTO_PLIST_RC DS A * return code SSA03200
BKWUTO_PLIST_RE DS A * reason code SSA03210
BKWUTO_PLIST_UN DS A * user name SSA03220
BKWUTO_PLIST_UNL DS A * its length SSA03230
BKWUTO_PLIST_ON DS A * object name SSA03240
BKWUTO_PLIST_ONL DS A * its length SSA03250
BKWUTO_PLIST_OC DS A * operation count SSA03260
BKWUTO_PLIST_OA DS A * operation array SSA03270
BKWUTO_PLIST_TR DS A * test results SSA03280
BKWUTO_PLIST_LENGTH EQU *-BKWUTO_PLIST SSA03290
 VMASMMAX SSA03300
 SPACE 1 SSA03310
* SSA03320
* delete user SSA03330
* SSA03340
 SPACE 1 SSA03350
 &$XXTRN BKWUDU SSA03360
SSAUTHDELETEUSER EQU BKWUDU SSA03370
 SPACE 1 SSA03380
BKWUDU_PLIST DSECT SSA03390
BKWUDU_PLIST_RC DS A * return code SSA03400
BKWUDU_PLIST_RE DS A * reason code SSA03410
BKWUDU_PLIST_UN DS A * user name SSA03420
BKWUDU_PLIST_UNL DS A * its length SSA03430
BKWUDU_PLIST_CID DS A * class identifier SSA03440
BKWUDU_PLIST_OC DS A * option count SSA03450
BKWUDU_PLIST_OA DS A * option array SSA03460
BKWUDU_PLIST_LENGTH EQU *-BKWUDU_PLIST SSA03470
 VMASMMAX SSA03480
 SPACE 1 SSA03490
-- SSA03500
* Utility functions * SSA03510
-- SSA03520
* SSA03530
* try to reset access to data files SSA03540
* SSA03550
 SPACE 1 SSA03560
 &$XXTRN BKWURL SSA03570
SSAUTHRELOAD EQU BKWURL SSA03580
 SPACE 1 SSA03590
BKWURL_PLIST DSECT SSA03600
BKWURL_PLIST_RC DS A * return code SSA03610
BKWURL_PLIST_RE DS A * reason code SSA03620
BKWURL_PLIST_LENGTH EQU *-BKWURL_PLIST SSA03630
 VMASMMAX SSA03640
 SPACE 1 SSA03650
-- SSA03660
* End of declarations * SSA03670
-- SSA03680
 EJECT SSA03690
 POP PRINT SSA03700
 MEND SSA03710

420 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Cache Bindings (SSASMCAC MACRO)

 MACRO SSA00010
 SSASMCAC &WEAK= SSA00020
 AGO .@ASMOB1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel cache bindings * SSA00070
.* * SSA00080
.* FUNCTION - Defines the file cache constants and dsects * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR74PVM SSA00220
.** SSA00230
.@ASMOB1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMOB2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMOB2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMOB3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMOB3 ANOP SSA00330
-- SSA00340
* Return and reason codes for file functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* return codes SSA00380
SS_CAC_RC_SUCCESS EQU 0 SSA00390
SS_CAC_RC_WARNING EQU 4 SSA00400
SS_CAC_RC_ERROR EQU 8 SSA00410
SS_CAC_RC_ABEND EQU 12 SSA00420
* SSA00430
* reason codes SSA00440
SS_CAC_RE_SUCCESS EQU 0 SSA00450
SS_CAC_RE_OUT_OF_STORAGE EQU 1501 SSA00460
SS_CAC_RE_TABLE_REPLACED EQU 1502 SSA00470
SS_CAC_RE_CACHE_NOT_FOUND EQU 1503 SSA00480
SS_CAC_RE_DSCR_FAIL EQU 1504 SSA00490
SS_CAC_RE_CACHE_EXISTS EQU 1505 SSA00500
SS_CAC_RE_BAD_SIZE EQU 1506 SSA00510
SS_CAC_RE_BAD_TOKEN EQU 1511 SSA00520
SS_CAC_RE_BAD_LENGTH EQU 1512 SSA00530
SS_CAC_RE_BAD_COUNT EQU 1513 SSA00540
SS_CAC_RE_BAD_ESMDL EQU 1514 SSA00550
SS_CAC_RE_BAD_FNAME EQU 1515 SSA00560
SS_CAC_RE_BAD_FVAL EQU 1516 SSA00570
SS_CAC_RE_EXIST_FAIL EQU 1517 SSA00580
SS_CAC_RE_FILE_NOT_FOUND EQU 1518 SSA00590
SS_CAC_RE_DELETE_IN_PROGRESS EQU 1519 SSA00600
SS_CAC_RE_BAD_OFFSET EQU 1520 SSA00610
SS_CAC_RE_BAD_TABLE_ID EQU 1521 SSA00620
SS_CAC_RE_TABLE_NOT_FOUND EQU 1522 SSA00630
SS_CAC_RE_OPEN_FAIL EQU 1523 SSA00640
SS_CAC_RE_BAD_RECFM EQU 1524 SSA00650
SS_CAC_RE_BAD_LRECL EQU 1525 SSA00660
SS_CAC_RE_OUT_OF_STORAGE_DS EQU 1526 SSA00670
SS_CAC_RE_READ_FAIL EQU 1527 SSA00680
SS_CAC_RE_BAD_DATA_STREAM EQU 1528 SSA00690
 SPACE 1 SSA00700
-- SSA00710
* Constants for file functions * SSA00720
-- SSA00730
 SPACE 1 SSA00740
* open flag names SSA00750
SS_CAC_OFN_XLATE EQU 0 SSA00760
SS_CAC_OFN_PRESERVE_DOLR EQU 1 SSA00770
SS_CAC_OFN_BFS EQU 2 SSA00780

Appendix I. Language Bindings 421

SS_CAC_OFN_RECMETHOD_FS EQU 3 SSA00790
SS_CAC_OFN_RECMETHOD_CACHE EQU 4 SSA00800
* SSA00810
* open flag values SSA00820
SS_CAC_OFV_NO EQU 0 SSA00830
SS_CAC_OFV_YES EQU 1 SSA00840
 SPACE 1 SSA00850
-- SSA00860
* Definitions for file functions * SSA00870
-- SSA00880
 SPACE 1 SSA00890
* SSA00900
* create cache SSA00910
* SSA00920
 SPACE 1 SSA00930
 &$XXTRN BKWOCC SSA00940
SSCACHECREATE EQU BKWOCC SSA00950
 SPACE 1 SSA00960
BKWOCC_PLIST DSECT SSA00970
BKWOCC_PLIST_RC DS A * return code SSA00980
BKWOCC_PLIST_RE DS A * reason code SSA00990
BKWOCC_PLIST_CNAME DS A * cache name SSA01000
BKWOCC_PLIST_PAGES DS A * file name length SSA01010
BKWOCC_PLIST_ALET DS A * storage group num SSA01020
BKWOCC_PLIST_LENGTH EQU *-BKWOCC_PLIST SSA01030
 VMASMMAX SSA01040
 SPACE 1 SSA01050
* SSA01060
* delete cache SSA01070
* SSA01080
 SPACE 1 SSA01090
 &$XXTRN BKWOCD SSA01100
SSCACHEDELETE EQU BKWOCD SSA01110
 SPACE 1 SSA01120
BKWOCD_PLIST DSECT SSA01130
BKWOCD_PLIST_RC DS A * return code SSA01140
BKWOCD_PLIST_RE DS A * reason code SSA01150
BKWOCD_PLIST_CNAME DS A * cache name SSA01160
BKWOCD_PLIST_LENGTH EQU *-BKWOCD_PLIST SSA01170
 VMASMMAX SSA01180
 SPACE 1 SSA01190
* SSA01200
* query cache utilization SSA01210
* SSA01220
 SPACE 1 SSA01230
 &$XXTRN BKWOCQ SSA01240
SSCACHEQUERY EQU BKWOCQ SSA01250
 SPACE 1 SSA01260
BKWOCQ_PLIST DSECT SSA01270
BKWOCQ_PLIST_RC DS A * return code SSA01280
BKWOCQ_PLIST_RE DS A * reason code SSA01290
BKWOCQ_PLIST_CNAME DS A * cache name SSA01300
BKWOCQ_PLIST_FCOUNT DS A * files cached SSA01310
BKWOCQ_PLIST_CSIZE DS A * cache size SSA01320
BKWOCQ_PLIST_INUSE DS A * amt in use SSA01330
BKWOCQ_PLIST_OCOUNT DS A * open count SSA01340
BKWOCQ_PLIST_HCOUNT DS A * hit count SSA01350
BKWOCQ_PLIST_LENGTH EQU *-BKWOCQ_PLIST SSA01360
 VMASMMAX SSA01370
 SPACE 1 SSA01380
* SSA01390
* set translation table SSA01400
* SSA01410
 SPACE 1 SSA01420
 &$XXTRN BKWOTS SSA01430
SSCACHEXLTABSET EQU BKWOTS SSA01440
 SPACE 1 SSA01450
BKWOTS_PLIST DSECT SSA01460
BKWOTS_PLIST_RC DS A * return code SSA01470
BKWOTS_PLIST_RE DS A * reason code SSA01480
BKWOTS_PLIST_XLTABID DS A * xltab id SSA01490
BKWOTS_PLIST_XLTAB DS A * xltab SSA01500
BKWOTS_PLIST_LENGTH EQU *-BKWOTS_PLIST SSA01510
 VMASMMAX SSA01520
 SPACE 1 SSA01530
* SSA01540
* open a cached file SSA01550
* SSA01560
 SPACE 1 SSA01570
 &$XXTRN BKWOFO SSA01580
SSCACHEFILEOPEN EQU BKWOFO SSA01590
 SPACE 1 SSA01600

422 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKWOFO_PLIST DSECT SSA01610
BKWOFO_PLIST_RC DS A * return code SSA01620
BKWOFO_PLIST_RE DS A * reason code SSA01630
BKWOFO_PLIST_CNAME DS A * cache name SSA01640
BKWOFO_PLIST_FSPEC DS A * file spec SSA01650
BKWOFO_PLIST_FSPECLEN DS A * its length SSA01660
BKWOFO_PLIST_ESMD DS A * ESM data SSA01670
BKWOFO_PLIST_ESMDLEN DS A * its length SSA01680
BKWOFO_PLIST_FCOUNT DS A * flag count SSA01690
BKWOFO_PLIST_FNAMES DS A * flag names SSA01700
BKWOFO_PLIST_FVALS DS A * flag values SSA01710
BKWOFO_PLIST_FTOKEN DS A * file token SSA01720
BKWOFO_PLIST_ALET DS A * file ALET SSA01730
BKWOFO_PLIST_DSADDR DS A * file DS address SSA01740
BKWOFO_PLIST_DSLEN DS A * file DS length SSA01750
BKWOFO_PLIST_LASTUPD DS A * last update date SSA01760
BKWOFO_PLIST_LENGTH EQU *-BKWOFO_PLIST SSA01770
 VMASMMAX SSA01780
 SPACE 1 SSA01790
* SSA01800
* read cached file SSA01810
* SSA01820
 SPACE 1 SSA01830
 &$XXTRN BKWOFR SSA01840
SSCACHEFILEREAD EQU BKWOFR SSA01850
 SPACE 1 SSA01860
BKWOFR_PLIST DSECT SSA01870
BKWOFR_PLIST_RC DS A * return code SSA01880
BKWOFR_PLIST_RE DS A * reason code SSA01890
BKWOFR_PLIST_CNAME DS A * cache name SSA01900
BKWOFR_PLIST_FTOKEN DS A * file token SSA01910
BKWOFR_PLIST_OFFSET DS A * byte offset SSA01920
BKWOFR_PLIST_COUNT DS A * byte count SSA01930
BKWOFR_PLIST_BUFFER DS A * out buffer SSA01940
BKWOFR_PLIST_RETURNED DS A * bytes returned SSA01950
BKWOFR_PLIST_LENGTH EQU *-BKWOFR_PLIST SSA01960
 VMASMMAX SSA01970
 SPACE 1 SSA01980
* SSA01990
* close cached file SSA02000
* SSA02010
 SPACE 1 SSA02020
 &$XXTRN BKWOFC SSA02030
SSCACHEFILECLOSE EQU BKWOFC SSA02040
 SPACE 1 SSA02050
BKWOFC_PLIST DSECT SSA02060
BKWOFC_PLIST_RC DS A * return code SSA02070
BKWOFC_PLIST_RE DS A * reason code SSA02080
BKWOFC_PLIST_CNAME DS A * cache name SSA02090
BKWOFC_PLIST_FTOKEN DS A * file token SSA02100
BKWOFC_PLIST_LENGTH EQU *-BKWOFC_PLIST SSA02110
 VMASMMAX SSA02120
 SPACE 1 SSA02130
-- SSA02140
* End of definitions * SSA02150
-- SSA02160
 EJECT SSA02170
 POP PRINT SSA02180
 MEND SSA02190

Client Bindings (SSASMCLI MACRO)

 MACRO SSA00010
 SSASMCLI &WEAK= SSA00020
 AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel services bindings * SSA00070
.* * SSA00080
.* FUNCTION - LANGUAGE BINDINGS FOR THE CLIENT SERVICES * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170

Appendix I. Language Bindings 423

.* STATUS - Version 2 Release 4 @VR2OZOZ SSA00180

.* * SSA00190

.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200

.** SSA00210

.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSA00220

.** SSA00230

.@ASMSR1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMSR2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMSR3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSA00330
-- SSA00340
* Return and reason codes for services functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_CLI_RC_SUCCESS EQU 0 SSA00400
SS_CLI_RC_WARNING EQU 4 SSA00410
SS_CLI_RC_ERROR EQU 8 SSA00420
SS_CLI_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_CLI_RE_SUCCESS EQU 0 SSA00460
SS_CLI_RE_OUT_OF_RANGE EQU 901 SSA00470
SS_CLI_RE_OUT_OF_STORAGE EQU 902 SSA00480
SS_CLI_RE_BAD_IAM EQU 903 SSA00490
SS_CLI_RE_BAD_METHOD EQU 904 SSA00500
SS_CLI_RE_SEMC_FAIL EQU 905 SSA00510
* SSA00520
* Who i am SSA00530
 SPACE 1 SSA00540
SS_CLI_IAM_INSTANCE EQU 0 SSA00550
SS_CLI_IAM_LINEDRIVER EQU 1 SSA00560
* SSA00570
* Ways to get data SSA00580
 SPACE 1 SSA00590
SS_CLI_METHOD_READ EQU 0 SSA00600
SS_CLI_METHOD_PEEK EQU 1 SSA00610
SS_CLI_METHOD_DISCARD EQU 2 SSA00620
-- SSA00630
* Definitions for services function * SSA00640
-- SSA00650
 SPACE 1 SSA00660
* SSA00670
* initialize client data queues SSA00680
* SSA00690
 SPACE 1 SSA00700
 &$XXTRN BKWIIN SSA00710
SSCLIENTDATAINIT EQU BKWIIN SSA00720
 SPACE 1 SSA00730
BKWIIN_PLIST DSECT SSA00740
BKWIIN_PLIST_RC DS A * return code SSA00750
BKWIIN_PLIST_RE DS A * reason code SSA00760
BKWIIN_PLIST_CB DS A * C-block addr SSA00770
BKWIIN_PLIST_SUBPOOL DS A * subpool name SSA00780
BKWIIN_PLIST_LENGTH EQU *-BKWIIN_PLIST SSA00790
 VMASMMAX SSA00800
 SPACE 1 SSA00810
* SSA00820
* terminate client data queues SSA00830
* SSA00840
 SPACE 1 SSA00850
 &$XXTRN BKWITM SSA00860
SSCLIENTDATATERM EQU BKWITM SSA00870
 SPACE 1 SSA00880
BKWITM_PLIST DSECT SSA00890
BKWITM_PLIST_RC DS A * return code SSA00900
BKWITM_PLIST_RE DS A * reason code SSA00910
BKWITM_PLIST_CB DS A * C-block addr SSA00920
BKWITM_PLIST_LENGTH EQU *-BKWITM_PLIST SSA00930
 VMASMMAX SSA00940
 SPACE 1 SSA00950
* SSA00960
* get input from client C-block SSA00970
* SSA00980
 SPACE 1 SSA00990

424 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 &$XXTRN BKWIDG SSA01000
SSCLIENTDATAGET EQU BKWIDG SSA01010
 SPACE 1 SSA01020
BKWIDG_PLIST DSECT SSA01030
BKWIDG_PLIST_RC DS A * return code SSA01040
BKWIDG_PLIST_RE DS A * reason code SSA01050
BKWIDG_PLIST_INS DS A * instance or ld? SSA01060
BKWIDG_PLIST_CB DS A * C-block addr SSA01070
BKWIDG_PLIST_GM DS A * get method SSA01080
BKWIDG_PLIST_ALET DS A * ALET SSA01090
BKWIDG_PLIST_BUF DS A * buffer SSA01100
BKWIDG_PLIST_AM DS A * amt wanted SSA01110
BKWIDG_PLIST_AG DS A * amt given SSA01120
BKWIDG_PLIST_AL DS A * amt left SSA01130
BKWIDG_PLIST_LENGTH EQU *-BKWIDG_PLIST SSA01140
 VMASMMAX SSA01150
 SPACE 1 SSA01160
* SSA01170
* put output onto client C-block SSA01180
* SSA01190
 SPACE 1 SSA01200
 &$XXTRN BKWIDP SSA01210
SSCLIENTDATAPUT EQU BKWIDP SSA01220
 SPACE 1 SSA01230
BKWIDP_PLIST DSECT SSA01240
BKWIDP_PLIST_RC DS A * return code SSA01250
BKWIDP_PLIST_RE DS A * reason code SSA01260
BKWIDP_PLIST_INS DS A * instance or ld? SSA01270
BKWIDP_PLIST_CB DS A * C-block addr SSA01280
BKWIDP_PLIST_ALET DS A * ALET SSA01290
BKWIDP_PLIST_BUF DS A * buffer SSA01300
BKWIDP_PLIST_AP DS A * amt to put SSA01310
BKWIDP_PLIST_NA DS A * new amount SSA01320
BKWIDP_PLIST_LENGTH EQU *-BKWIDP_PLIST SSA01330
 VMASMMAX SSA01340
 SPACE 1 SSA01350
-- SSA01360
* End of declarations * SSA01370
-- SSA01380
 EJECT SSA01390
 POP PRINT SSA01400
 MEND SSA01410

Enrollment Bindings (SSASMENR MACRO)

 MACRO SSA00010
 SSASMENR &WEAK= SSA00020
 AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel services bindings * SSA00070
.* * SSA00080
.* FUNCTION - Language bindings for enrollment services * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSA00220
.** SSA00230
.@ASMSR1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMSR2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMSR3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSA00330
-- SSA00340

Appendix I. Language Bindings 425

* Return and reason codes for services functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_ENR_RC_SUCCESS EQU 0 SSA00400
SS_ENR_RC_WARNING EQU 4 SSA00410
SS_ENR_RC_ERROR EQU 8 SSA00420
SS_ENR_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_ENR_RE_SUCCESS EQU 0 SSA00460
SS_ENR_RE_DB_NOT_FOUND EQU 1001 SSA00470
SS_ENR_RE_REC_NOT_FOUND EQU 1002 SSA00480
SS_ENR_RE_TRUNCATED EQU 1003 SSA00490
SS_ENR_RE_DIRTY EQU 1004 SSA00500
SS_ENR_RE_REC_EXISTS EQU 1005 SSA00510
SS_ENR_RE_BAD_LENGTH EQU 1006 SSA00520
SS_ENR_RE_BAD_DROPTYPE EQU 1007 SSA00530
SS_ENR_RE_NO_STORAGE EQU 1008 SSA00540
SS_ENR_RE_CLOSE_FAIL EQU 1009 SSA00550
SS_ENR_RE_WRITE_FAIL EQU 1010 SSA00560
SS_ENR_RE_BAD_METHOD EQU 1011 SSA00570
SS_ENR_RE_OPEN_FAIL EQU 1012 SSA00580
SS_ENR_RE_GWU_FAIL EQU 1013 SSA00590
SS_ENR_RE_POINT_FAIL EQU 1014 SSA00600
SS_ENR_RE_EXIST_FAIL EQU 1015 SSA00610
SS_ENR_RE_NOT_SFS EQU 1016 SSA00620
SS_ENR_RE_NOT_V EQU 1017 SSA00630
SS_ENR_RE_DSCR_FAIL EQU 1018 SSA00640
SS_ENR_RE_READ_FAIL EQU 1019 SSA00650
SS_ENR_RE_DB_EXISTS EQU 1020 SSA00660
SS_ENR_RE_COMM_FAIL EQU 1021 SSA00670
SS_ENR_RE_NOT_DISK EQU 1022 SSA00680
SS_ENR_RE_BAD_KIND EQU 1023 SSA00690
SS_ENR_RE_NEW_FILE EQU 1024 SSA00700
SS_ENR_RE_NO_SETS EQU 1025 SSA00710
SS_ENR_RE_SET_EMPTY EQU 1026 SSA00720
 SPACE 1 SSA00730
* SSA00740
* API maxima SSA00750
SS_ENR_INDEX_WIDTH EQU 64 SSA00760
SS_ENR_MAX_DATA EQU 65450 SSA00770
 SPACE 1 SSA00780
* SSA00790
* KIND types SSA00800
SS_ENR_KIND_MEMORY EQU 0 SSA00810
SS_ENR_KIND_DISK EQU 1 SSA00820
 SPACE 1 SSA00830
* SSA00840
* INSERT types SSA00850
SS_ENR_INSERT_NEW EQU 0 SSA00860
SS_ENR_INSERT_REPLACE EQU 1 SSA00870
 SPACE 1 SSA00880
* SSA00890
* DROP types SSA00900
SS_ENR_DROP_COMMIT EQU 0 SSA00910
SS_ENR_DROP_ROLLBACK EQU 1 SSA00920
 SPACE 1 SSA00930
-- SSA00940
* Definitions for enrollment services * SSA00950
-- SSA00960
 SPACE 1 SSA00970
* SSA00980
* load enrollment data base SSA00990
* SSA01000
 SPACE 1 SSA01010
 &$XXTRN BKWJLO SSA01020
SSENROLLLOAD EQU BKWJLO SSA01030
 SPACE 1 SSA01040
BKWJLO_PLIST DSECT SSA01050
BKWJLO_PLIST_RC DS A * return code SSA01060
BKWJLO_PLIST_RE DS A * reason code SSA01070
BKWJLO_PLIST_DBASE DS A * dbase name SSA01080
BKWJLO_PLIST_DS_KIND DS A * DS kind SSA01090
BKWJLO_PLIST_DS_SIZE DS A * DS size SSA01100
BKWJLO_PLIST_FN DS A * filename SSA01110
BKWJLO_PLIST_FNL DS A * filename length SSA01120
BKWJLO_PLIST_LENGTH EQU *-BKWJLO_PLIST SSA01130
 VMASMMAX SSA01140
 SPACE 1 SSA01150
* SSA01160

426 z/VM: Reusable Server Kernel Prog. Guide & Ref.

* drop enrollment data base SSA01170
* SSA01180
 SPACE 1 SSA01190
 &$XXTRN BKWJDP SSA01200
SSENROLLDROP EQU BKWJDP SSA01210
 SPACE 1 SSA01220
BKWJDP_PLIST DSECT SSA01230
BKWJDP_PLIST_RC DS A * return code SSA01240
BKWJDP_PLIST_RE DS A * reason code SSA01250
BKWJDP_PLIST_DBASE DS A * dbase name SSA01260
BKWJDP_PLIST_DT DS A * drop type SSA01270
BKWJDP_PLIST_LENGTH EQU *-BKWJDP_PLIST SSA01280
 VMASMMAX SSA01290
 SPACE 1 SSA01300
* SSA01310
* commit enrollment data base SSA01320
* SSA01330
 SPACE 1 SSA01340
 &$XXTRN BKWJCM SSA01350
SSENROLLCOMMIT EQU BKWJCM SSA01360
 SPACE 1 SSA01370
BKWJCM_PLIST DSECT SSA01380
BKWJCM_PLIST_RC DS A * return code SSA01390
BKWJCM_PLIST_RE DS A * reason code SSA01400
BKWJCM_PLIST_DBASE DS A * dbase name SSA01410
BKWJCM_PLIST_LENGTH EQU *-BKWJCM_PLIST SSA01420
 VMASMMAX SSA01430
 SPACE 1 SSA01440
* SSA01450
* list data bases SSA01460
* SSA01470
 SPACE 1 SSA01480
 &$XXTRN BKWJDL SSA01490
SSENROLLLIST EQU BKWJDL SSA01500
 SPACE 1 SSA01510
BKWJDL_PLIST DSECT SSA01520
BKWJDL_PLIST_RC DS A * return code SSA01530
BKWJDL_PLIST_RE DS A * reason code SSA01540
BKWJDL_PLIST_CB DS A * C-block SSA01550
BKWJDL_PLIST_LENGTH EQU *-BKWJDL_PLIST SSA01560
 VMASMMAX SSA01570
 SPACE 1 SSA01580
* SSA01590
* insert record SSA01600
* SSA01610
 SPACE 1 SSA01620
 &$XXTRN BKWJRI SSA01630
SSENROLLRECORDINSERT EQU BKWJRI SSA01640
 SPACE 1 SSA01650
BKWJRI_PLIST DSECT SSA01660
BKWJRI_PLIST_RC DS A * return code SSA01670
BKWJRI_PLIST_RE DS A * reason code SSA01680
BKWJRI_PLIST_DBASE DS A * dbase name SSA01690
BKWJRI_PLIST_INDEX DS A * index SSA01700
BKWJRI_PLIST_DATA DS A * data SSA01710
BKWJRI_PLIST_DATAL DS A * data length SSA01720
BKWJRI_PLIST_REP DS A * replace? SSA01730
BKWJRI_PLIST_LENGTH EQU *-BKWJRI_PLIST SSA01740
 VMASMMAX SSA01750
 SPACE 1 SSA01760
* SSA01770
* remove record SSA01780
* SSA01790
 SPACE 1 SSA01800
 &$XXTRN BKWJRR SSA01810
SSENROLLRECORDREMOVE EQU BKWJRR SSA01820
 SPACE 1 SSA01830
BKWJRR_PLIST DSECT SSA01840
BKWJRR_PLIST_RC DS A * return code SSA01850
BKWJRR_PLIST_RE DS A * reason code SSA01860
BKWJRR_PLIST_DBASE DS A * dbase name SSA01870
BKWJRR_PLIST_INDEX DS A * index SSA01880
BKWJRR_PLIST_LENGTH EQU *-BKWJRR_PLIST SSA01890
 VMASMMAX SSA01900
 SPACE 1 SSA01910
* SSA01920
* list records SSA01930
* SSA01940
 SPACE 1 SSA01950
 &$XXTRN BKWJRL SSA01960
SSENROLLRECORDLIST EQU BKWJRL SSA01970
 SPACE 1 SSA01980

Appendix I. Language Bindings 427

BKWJRL_PLIST DSECT SSA01990
BKWJRL_PLIST_RC DS A * return code SSA02000
BKWJRL_PLIST_RE DS A * reason code SSA02010
BKWJRL_PLIST_DBASE DS A * dbase name SSA02020
BKWJRL_PLIST_CB DS A * C-block SSA02030
BKWJRL_PLIST_LENGTH EQU *-BKWJRL_PLIST SSA02040
 VMASMMAX SSA02050
 SPACE 1 SSA02060
* SSA02070
* get record SSA02080
* SSA02090
 SPACE 1 SSA02100
 &$XXTRN BKWJRG SSA02110
SSENROLLRECORDGET EQU BKWJRG SSA02120
 SPACE 1 SSA02130
BKWJRG_PLIST DSECT SSA02140
BKWJRG_PLIST_RC DS A * return code SSA02150
BKWJRG_PLIST_RE DS A * reason code SSA02160
BKWJRG_PLIST_DBASE DS A * dbase name SSA02170
BKWJRG_PLIST_INDEX DS A * index SSA02180
BKWJRG_PLIST_BUF DS A * buffer SSA02190
BKWJRG_PLIST_BUFS DS A * buffer size SSA02200
BKWJRG_PLIST_AR DS A * amt returned SSA02210
BKWJRG_PLIST_LENGTH EQU *-BKWJRG_PLIST SSA02220
 VMASMMAX SSA02230
 SPACE 1 SSA02240
-- SSA02250
* End of declarations * SSA02260
-- SSA02270
 EJECT SSA02280
 POP PRINT SSA02290
 MEND SSA02300

Memory Bindings (SSASMMEM MACRO)

 MACRO SSA00010
 SSASMMEM &WEAK= SSA00020
 AGO .@ASMME1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel memory bindings * SSA00070
.* * SSA00080
.* FUNCTION - Defines memory constants and dsects * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR74PVM SSA00220
.** SSA00230
.@ASMME1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&ARM' NE 'SUP').ASMME2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMME2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMME3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMME3 ANOP SSA00330
-- SSA00340
* Return and reason codes for memory functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_MEM_RC_SUCCESS EQU 0 SSA00400
SS_MEM_RC_WARNING EQU 4 SSA00410
SS_MEM_RC_ERROR EQU 8 SSA00420
SS_MEM_RC_ABEND EQU 12 SSA00430
* SSA00440

428 z/VM: Reusable Server Kernel Prog. Guide & Ref.

* reason codes SSA00450
SS_MEM_RE_SUCCESS EQU 0 SSA00460
SS_MEM_RE_OUT_OF_STORAGE EQU 801 SSA00470
SS_MEM_RE_BAD_AMOUNT EQU 802 SSA00480
SS_MEM_RE_BAD_ALIGN EQU 803 SSA00490
SS_MEM_RE_NO_SUBPOOL EQU 804 SSA00500
SS_MEM_RE_NOT_ALLOC EQU 805 SSA00510
SS_MEM_RE_SUBPOOL_DELETED EQU 806 SSA00520
SS_MEM_RE_SPD_FAIL EQU 807 SSA00530
SS_MEM_RE_BAD_KEY EQU 808 SSA00540
SS_MEM_RE_SUBPOOL_EXISTS EQU 809 SSA00550
SS_MEM_RE_SPCC_FAIL EQU 810 SSA00560
SS_MEM_RE_SPLA_FAIL EQU 811 SSA00570
* SSA00580
-- SSA00590
* Constants for memory functions * SSA00600
-- SSA00610
 SPACE 1 SSA00620
* SSA00630
* Alignment attributes SSA00640
* SSA00650
SS_MEM_ALIGN_NORM EQU 0 SSA00660
SS_MEM_ALIGN_PAGE EQU 1 SSA00670
 SPACE 1 SSA00680
-- SSA00690
* Definitions for memory functions * SSA00700
-- SSA00710
* SSA00720
* create a data space SSA00730
* SSA00740
 SPACE 1 SSA00750
 &$XXTRN BKWMCR SSA00760
SSMEMORYCREATEDS EQU BKWMCR SSA00770
 SPACE 1 SSA00780
BKWMCR_PLIST DSECT SSA00790
BKWMCR_PLIST_RC DS A * return code SSA00800
BKWMCR_PLIST_RE DS A * reason code SSA00810
BKWMCR_PLIST_SUBPOOL DS A * subpool name SSA00820
BKWMCR_PLIST_SIZE DS A * DS size (pages) SSA00830
BKWMCR_PLIST_KEY DS A * storage key SSA00840
BKWMCR_PLIST_OCOUNT DS A * option count SSA00850
BKWMCR_PLIST_OARRAY DS A * option array SSA00860
BKWMCR_PLIST_ASIT DS A * DS ASIT SSA00870
BKWMCR_PLIST_ALET DS A * DS ALET SSA00880
BKWMCR_PLIST_LENGTH EQU *-BKWMCR_PLIST SSA00890
 VMASMMAX SSA00900
 SPACE 1 SSA00910
* SSA00920
* allocate memory SSA00930
* SSA00940
 SPACE 1 SSA00950
 &$XXTRN BKWMAL SSA00960
SSMEMORYALLOCATE EQU BKWMAL SSA00970
 SPACE 1 SSA00980
BKWMAL_PLIST DSECT SSA00990
BKWMAL_PLIST_RC DS A * return code SSA01000
BKWMAL_PLIST_RE DS A * reason code SSA01010
BKWMAL_PLIST_LB DS A * lower bound SSA01020
BKWMAL_PLIST_UB DS A * upper bound SSA01030
BKWMAL_PLIST_SUBPOOL DS A * subpool name SSA01040
BKWMAL_PLIST_ALIGN DS A * align type SSA01050
BKWMAL_PLIST_BA DS A * buffer address SSA01060
BKWMAL_PLIST_BG DS A * bytes gotten SSA01070
BKWMAL_PLIST_LENGTH EQU *-BKWMAL_PLIST SSA01080
 VMASMMAX SSA01090
 SPACE 1 SSA01100
* SSA01110
* release memory SSA01120
* SSA01130
 SPACE 1 SSA01140
 &$XXTRN BKWMRE SSA01150
SSMEMORYRELEASE EQU BKWMRE SSA01160
 SPACE 1 SSA01170
BKWMRE_PLIST DSECT SSA01180
BKWMRE_PLIST_RC DS A * return code SSA01190
BKWMRE_PLIST_RE DS A * reason code SSA01200
BKWMRE_PLIST_BR DS A * bytes released SSA01210
BKWMRE_PLIST_SUBPOOL DS A * subpool name SSA01220
BKWMRE_PLIST_BA DS A * buffer address SSA01230
BKWMRE_PLIST_LENGTH EQU *-BKWMRE_PLIST SSA01240
 VMASMMAX SSA01250
 SPACE 1 SSA01260

Appendix I. Language Bindings 429

* SSA01270
* delete subpool SSA01280
* SSA01290
 SPACE 1 SSA01300
 &$XXTRN BKWMDE SSA01310
SSMEMORYDELETE EQU BKWMDE SSA01320
 SPACE 1 SSA01330
BKWMDE_PLIST DSECT SSA01340
BKWMDE_PLIST_RC DS A * return code SSA01350
BKWMDE_PLIST_RE DS A * reason code SSA01360
BKWMDE_PLIST_SUBPOOL DS A * subpool name SSA01370
BKWMDE_PLIST_LENGTH EQU *-BKWMDE_PLIST SSA01380
 VMASMMAX SSA01390
 SPACE 1 SSA01400
-- SSA01410
* End of declarations * SSA01420
-- SSA01430
 EJECT SSA01440
 POP PRINT SSA01450
 MEND SSA01460

Storage Group Bindings (SSASMSGP MACRO)

 MACRO SSA00010
 SSASMSGP &WEAK= SSA00020
 AGO .@ASMSG1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel storage group bindings * SSA00070
.* * SSA00080
.* FUNCTION - Defines the storage group constants and dsects * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR2LMVM SSA00220
.** SSA00230
.@ASMSG1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMSG2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMSG2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMSG3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSG3 ANOP SSA00330
-- SSA00340
* Return and reason codes for storage group functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* return codes SSA00380
SS_SGP_RC_SUCCESS EQU 0 SSA00390
SS_SGP_RC_WARNING EQU 4 SSA00400
SS_SGP_RC_ERROR EQU 8 SSA00410
SS_SGP_RC_ABEND EQU 12 SSA00420
* SSA00430
* reason codes SSA00440
SS_SGP_RE_SUCCESS EQU 0 SSA00450
SS_SGP_RE_TOO_MANY EQU 601 SSA00460
SS_SGP_RE_NOT_FOUND EQU 602 SSA00470
SS_SGP_RE_OUT_OF_STORAGE EQU 603 SSA00480
SS_SGP_RE_MX_FAIL EQU 604 SSA00490
SS_SGP_RE_INIT_DONE EQU 605 SSA00500
SS_SGP_RE_EXISTS EQU 607 SSA00510
SS_SGP_RE_VDQ_FAIL EQU 608 SSA00520
SS_SGP_RE_ONLINE EQU 609 SSA00530
SS_SGP_RE_OFFLINE EQU 610 SSA00540
SS_SGP_RE_Q_FAIL EQU 611 SSA00550
SS_SGP_RE_CV_FAIL EQU 612 SSA00560

430 z/VM: Reusable Server Kernel Prog. Guide & Ref.

SS_SGP_RE_E_FAIL EQU 613 SSA00570
SS_SGP_RE_MAINT EQU 614 SSA00580
SS_SGP_RE_DS_FAIL EQU 615 SSA00590
SS_SGP_RE_POOL_FAIL EQU 616 SSA00600
SS_SGP_RE_MAP_FAIL EQU 617 SSA00610
SS_SGP_RE_BAD_ATTRIB EQU 618 SSA00620
SS_SGP_RE_REWRITE_FAIL EQU 619 SSA00630
SS_SGP_RE_READ_ONLY EQU 620 SSA00640
SS_SGP_RE_OUT_OF_RANGE EQU 622 SSA00650
SS_SGP_RE_WRONG_MODE EQU 623 SSA00660
SS_SGP_RE_IO_FAIL EQU 624 SSA00670
SS_SGP_RE_DIAG_250_FAIL EQU 625 SSA00680
SS_SGP_RE_TOO_BIG EQU 626 SSA00690
SS_SGP_RE_BAD_NAME EQU 628 SSA00700
SS_SGP_RE_NAME_IN_USE EQU 629 SSA00710
 SPACE 1 SSA00720
* SSA00730
* attributes SSA00740
SS_SGP_ATTRIB_DS EQU 0 SSA00750
SS_SGP_ATTRIB_NO_DS EQU 1 SSA00760
SS_SGP_ATTRIB_BLOCK_RW EQU 2 SSA00770
SS_SGP_ATTRIB_BLOCK_RO EQU 3 SSA00780
SS_SGP_ATTRIB_OFFLINE EQU 7 SSA00790
 SPACE 1 SSA00800
-- SSA00810
* Definitions for storage group functions * SSA00820
-- SSA00830
 SPACE 1 SSA00840
* SSA00850
* storage group create SSA00860
* SSA00870
 SPACE 1 SSA00880
 &$XXTRN BKWSGC SSA00890
SSSGPCREATE EQU BKWSGC SSA00900
 SPACE 1 SSA00910
BKWSGC_PLIST DSECT SSA00920
BKWSGC_PLIST_RC DS A * return code SSA00930
BKWSGC_PLIST_RE DS A * reason code SSA00940
BKWSGC_PLIST_SGN DS A * sgp number SSA00950
BKWSGC_PLIST_VDC DS A * vdev count SSA00960
BKWSGC_PLIST_VDA DS A * vdev array SSA00970
BKWSGC_PLIST_AC DS A * attrib count SSA00980
BKWSGC_PLIST_AA DS A * attrib array SSA00990
BKWSGC_PLIST_LENGTH EQU *-BKWSGC_PLIST SSA01000
 VMASMMAX SSA01010
 SPACE 1 SSA01020
* SSA01030
* storage group delete SSA01040
* SSA01050
 SPACE 1 SSA01060
 &$XXTRN BKWSGD SSA01070
SSSGPDELETE EQU BKWSGD SSA01080
 SPACE 1 SSA01090
BKWSGD_PLIST DSECT SSA01100
BKWSGD_PLIST_RC DS A * return code SSA01110
BKWSGD_PLIST_RE DS A * reason code SSA01120
BKWSGD_PLIST_SGN DS A * sgp number SSA01130
BKWSGD_PLIST_LENGTH EQU *-BKWSGD_PLIST SSA01140
 VMASMMAX SSA01150
 SPACE 1 SSA01160
* SSA01170
* storage group find SSA01180
* SSA01190
 SPACE 1 SSA01200
 &$XXTRN BKWSGF SSA01210
SSSGPFIND EQU BKWSGF SSA01220
 SPACE 1 SSA01230
BKWSGF_PLIST DSECT SSA01240
BKWSGF_PLIST_RC DS A * return code SSA01250
BKWSGF_PLIST_RE DS A * reason code SSA01260
BKWSGF_PLIST_SGNAME DS A * sg name SSA01270
BKWSGF_PLIST_SGN DS A * sgp number SSA01280
BKWSGF_PLIST_IOMODE DS A * I/O mode SSA01290
BKWSGF_PLIST_TOTAL DS A * total blocks SSA01300
BKWSGF_PLIST_LENGTH EQU *-BKWSGF_PLIST SSA01310
 VMASMMAX SSA01320
 SPACE 1 SSA01330
* SSA01340
* storage group list (what's defined?) SSA01350
* SSA01360
 SPACE 1 SSA01370
 &$XXTRN BKWSGL SSA01380

Appendix I. Language Bindings 431

SSSGPLIST EQU BKWSGL SSA01390
 SPACE 1 SSA01400
BKWSGL_PLIST DSECT SSA01410
BKWSGL_PLIST_RC DS A * return code SSA01420
BKWSGL_PLIST_RE DS A * reason code SSA01430
BKWSGL_PLIST_NX DS A * number expected SSA01440
BKWSGL_PLIST_NF DS A * number filled SSA01450
BKWSGL_PLIST_SGNA DS A * sgp number array SSA01460
BKWSGL_PLIST_LENGTH EQU *-BKWSGL_PLIST SSA01470
 VMASMMAX SSA01480
 SPACE 1 SSA01490
* SSA01500
* storage group query SSA01510
* SSA01520
 SPACE 1 SSA01530
 &$XXTRN BKWSGQ SSA01540
SSSGPQUERY EQU BKWSGQ SSA01550
 SPACE 1 SSA01560
BKWSGQ_PLIST DSECT SSA01570
BKWSGQ_PLIST_RC DS A * return code SSA01580
BKWSGQ_PLIST_RE DS A * reason code SSA01590
BKWSGQ_PLIST_SGN DS A * sgp number SSA01600
BKWSGQ_PLIST_SGNAME DS A * sg name SSA01610
BKWSGQ_PLIST_IOMODE DS A * I/O mode SSA01620
BKWSGQ_PLIST_TOTAL DS A * total blocks SSA01630
BKWSGQ_PLIST_STATUS DS A * status word SSA01640
BKWSGQ_PLIST_AX DS A * attributes expected SSA01650
BKWSGQ_PLIST_AF DS A * attributes filled in SSA01660
BKWSGQ_PLIST_AA DS A * attribute array SSA01670
BKWSGQ_PLIST_VX DS A * vdevs expected SSA01680
BKWSGQ_PLIST_VF DS A * vdevs filled in SSA01690
BKWSGQ_PLIST_VA DS A * vdev array SSA01700
BKWSGQ_PLIST_BA DS A * blocks array SSA01710
BKWSGQ_PLIST_LENGTH EQU *-BKWSGQ_PLIST SSA01720
 VMASMMAX SSA01730
 SPACE 1 SSA01740
* SSA01750
* storage group read SSA01760
* SSA01770
 SPACE 1 SSA01780
 &$XXTRN BKWSGR SSA01790
SSSGPREAD EQU BKWSGR SSA01800
 SPACE 1 SSA01810
BKWSGR_PLIST DSECT SSA01820
BKWSGR_PLIST_RC DS A * return code SSA01830
BKWSGR_PLIST_RE DS A * reason code SSA01840
BKWSGR_PLIST_SGN DS A * sgp number SSA01850
BKWSGR_PLIST_PN DS A * page number SSA01860
BKWSGR_PLIST_PC DS A * number of pages SSA01870
BKWSGR_PLIST_ALET DS A * buffer ALET SSA01880
BKWSGR_PLIST_BUF DS A * buffer SSA01890
BKWSGR_PLIST_LENGTH EQU *-BKWSGR_PLIST SSA01900
 VMASMMAX SSA01910
 SPACE 1 SSA01920
* SSA01930
* storage group start (like a mount) SSA01940
* SSA01950
 SPACE 1 SSA01960
 &$XXTRN BKWSGS SSA01970
SSSGPSTART EQU BKWSGS SSA01980
 SPACE 1 SSA01990
BKWSGS_PLIST DSECT SSA02000
BKWSGS_PLIST_RC DS A * return code SSA02010
BKWSGS_PLIST_RE DS A * reason code SSA02020
BKWSGS_PLIST_SGN DS A * sgp number SSA02030
BKWSGS_PLIST_SGNAME DS A * sgp name SSA02040
BKWSGS_PLIST_AC DS A * attribute count SSA02050
BKWSGS_PLIST_AA DS A * attribute array SSA02060
BKWSGS_PLIST_LENGTH EQU *-BKWSGS_PLIST SSA02070
 VMASMMAX SSA02080
 SPACE 1 SSA02090
* SSA02100
* storage group stop (like a dismount) SSA02110
* SSA02120
 SPACE 1 SSA02130
 &$XXTRN BKWSGT SSA02140
SSSGPSTOP EQU BKWSGT SSA02150
 SPACE 1 SSA02160
BKWSGT_PLIST DSECT SSA02170
BKWSGT_PLIST_RC DS A * return code SSA02180
BKWSGT_PLIST_RE DS A * reason code SSA02190
BKWSGT_PLIST_SGN DS A * sgp number SSA02200

432 z/VM: Reusable Server Kernel Prog. Guide & Ref.

BKWSGT_PLIST_AC DS A * attribute count SSA02210
BKWSGT_PLIST_AA DS A * attribute array SSA02220
BKWSGT_PLIST_LENGTH EQU *-BKWSGT_PLIST SSA02230
 VMASMMAX SSA02240
 SPACE 1 SSA02250
* SSA02260
* storage group write SSA02270
* SSA02280
 SPACE 1 SSA02290
 &$XXTRN BKWSGW SSA02300
SSSGPWRITE EQU BKWSGW SSA02310
 SPACE 1 SSA02320
BKWSGW_PLIST DSECT SSA02330
BKWSGW_PLIST_RC DS A * return code SSA02340
BKWSGW_PLIST_RE DS A * reason code SSA02350
BKWSGW_PLIST_SGN DS A * sgp number SSA02360
BKWSGW_PLIST_PN DS A * page number SSA02370
BKWSGW_PLIST_PC DS A * page count SSA02380
BKWSGW_PLIST_ALET DS A * buffer ALET SSA02390
BKWSGW_PLIST_BUF DS A * buffer SSA02400
BKWSGW_PLIST_LENGTH EQU *-BKWSGW_PLIST SSA02410
 VMASMMAX SSA02420
 SPACE 1 SSA02430
-- SSA02440
* End of storage group declarations * SSA02450
-- SSA02460
 EJECT SSA02470
 POP PRINT SSA02480
 MEND SSA02490

Services Bindings (SSASMSRV MACRO)

 MACRO SSA00010
 SSASMSRV &WEAK= SSA00020
 AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel services bindings * SSA00070
.* * SSA00080
.* FUNCTION - Defines the services constants and dsects * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSA00220
.** SSA00230
.@ASMSR1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMSR2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMSR3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSA00330
-- SSA00340
* Return and reason codes for services functions * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* return codes SSA00380
SS_SRV_RC_SUCCESS EQU 0 SSA00390
SS_SRV_RC_WARNING EQU 4 SSA00400
SS_SRV_RC_ERROR EQU 8 SSA00410
SS_SRV_RC_ABEND EQU 12 SSA00420
* SSA00430
* reason codes SSA00440
SS_SRV_RE_SUCCESS EQU 0 SSA00450
SS_SRV_RE_BAD_TYPE EQU 701 SSA00460
SS_SRV_RE_NOT_FOUND EQU 702 SSA00470

Appendix I. Language Bindings 433

SS_SRV_RE_OUT_OF_RANGE EQU 703 SSA00480
SS_SRV_RE_OUT_OF_STORAGE EQU 706 SSA00490
SS_SRV_RE_EXISTS EQU 709 SSA00500
* SSA00510
* types of messages SSA00520
SS_SRV_MSGTYPE_INSTANCE EQU 0 SSA00530
SS_SRV_MSGTYPE_LINEDRIVER EQU 1 SSA00540
* SSA00550
* types of services SSA00560
SS_SRV_SRVTYPE_NORMAL EQU 0 SSA00570
SS_SRV_SRVTYPE_LD EQU 1 SSA00580
SS_SRV_SRVTYPE_LDSS EQU 2 SSA00590
* SSA00600
* values of various msg bits... these have to line SSA00610
* up with the message structures below... be careful SSA00620
SS_SRV_IBIT_CCLOSE EQU 32768 SSA00630
SS_SRV_IBIT_ACLOSE EQU 16384 SSA00640
SS_SRV_IBIT_CDONE EQU 8192 SSA00650
SS_SRV_IBIT_LDSTOP EQU 4096 SSA00660
SS_SRV_IBIT_NEWDATA EQU 2048 SSA00670
SS_SRV_LBIT_STOPACK EQU 32768 SSA00680
SS_SRV_LBIT_NEWDATA EQU 16384 SSA00690
* SSA00700
* length of keys SSA00710
SS_SRV_KEYLENGTH EQU 32 SSA00720
 SPACE 1 SSA00730
-- SSA00740
* Stuctures * SSA00750
-- SSA00760
 SPACE 1 SSA00770
* SSA00780
* S-block SSA00790
* SSA00800
VMSS_SBLOCK DSECT SSA00810
SBL_NEXT DS A * next service SSA00820
SBL_PREV DS A * prev service SSA00830
SBL_SN DS CL8 * its name SSA00840
SBL_SNL DS F * name length SSA00850
SBL_INITADDR DS A * init addr SSA00860
SBL_AGTADDR DS A * agent addr SSA00870
SBL_CMPLADDR DS A * cmpltn addr SSA00880
SBL_TYPE DS F * service type SSA00890
SBL_LOCKWORD DS F * lock word SSA00900
SBL_STARTCOUNT DS F * start count SSA00910
SBL_MONPTR DS F * MON BUF PTR SSA00920
VMSS_SBLOCK_LEN EQU *-VMSS_SBLOCK SSA00930
 SPACE 1 SSA00940
* SSA00950
* C-block SSA00960
* SSA00970
VMSS_CBLOCK DSECT SSA00980
VC_SBLOCK DS A SSA00990
VC_LDNAME DS CL8 SSA01000
VC_STATBITS DS XL4 SSA01010
 ORG VC_STATBITS SSA01020
 DS XL1 SSA01030
VC_B_RECORD EQU X'80' SSA01040
 DS XL3 SSA01050
VC_QH DS F SSA01060
VC_SID DS F SSA01070
VC_INSTANCE DS F SSA01080
VC_THREADID DS F SSA01090
VC_IKEY DS CL32 SSA01100
VC_LKEY DS CL32 SSA01110
VC_USERID DS CL64 SSA01120
VC_BYTESIN DS F SSA01130
VC_BYTESOUT DS F SSA01140
VC_IBW DS F SSA01150
VC_LDBW DS F SSA01160
VC_STARTSTCK DS CL8 SSA01170
VC_STOPSTCK DS CL8 SSA01180
VC_RESERVED DS CL128 SSA01190
VC_LDDATA DS 0C SSA01200
VMSS_CBLOCK_LEN EQU *-VMSS_CBLOCK SSA01210
 SPACE 1 SSA01220
* SSA01230
* msg to instance SSA01240
* SSA01250
VMSS_IMSG DSECT SSA01260
VI_IKEY DS CL32 SSA01270
VI_TYPE DS F SSA01280
VI_CBITS DS XL2 SSA01290

434 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 ORG VI_CBITS SSA01300
 DS XL1 SSA01310
VI_B_CCLOSE EQU X'80' SSA01320
VI_B_ACLOSE EQU X'40' SSA01330
VI_B_CDONE EQU X'20' SSA01340
VI_B_LDSTOP EQU X'10' SSA01350
VI_B_NEWDATA EQU X'08' SSA01360
 DS XL1 SSA01370
VMSS_IMSG_LEN EQU *-VMSS_IMSG SSA01380
 SPACE 1 SSA01390
* SSA01400
* msg to line driver SSA01410
* SSA01420
VMSS_LMSG DSECT SSA01430
VL_LKEY DS CL32 SSA01440
VL_TYPE DS F SSA01450
VL_IKEY DS CL32 SSA01460
VL_IBITS DS XL2 SSA01470
 ORG VL_IBITS SSA01480
 DS XL1 SSA01490
VL_B_STOPACK EQU X'80' SSA01500
VL_B_NEWDATA EQU X'40' SSA01510
 DS XL1 SSA01520
VMSS_LMSG_LEN EQU *-VMSS_LMSG SSA01530
 SPACE 1 SSA01540
-- SSA01550
* Definitions for services function * SSA01560
-- SSA01570
 SPACE 1 SSA01580
* SSA01590
* bind service to addresses SSA01600
* SSA01610
 SPACE 1 SSA01620
 &$XXTRN BKWVBN SSA01630
SSSERVICEBIND EQU BKWVBN SSA01640
 SPACE 1 SSA01650
BKWVBN_PLIST DSECT SSA01660
BKWVBN_PLIST_RC DS A * return code SSA01670
BKWVBN_PLIST_RE DS A * reason code SSA01680
BKWVBN_PLIST_SN DS A * service name SSA01690
BKWVBN_PLIST_SNL DS A * its length SSA01700
BKWVBN_PLIST_IA DS A * init addr SSA01710
BKWVBN_PLIST_SA DS A * service addr SSA01720
BKWVBN_PLIST_TA DS A * completion addr SSA01730
BKWVBN_PLIST_ST DS A * service type SSA01740
BKWVBN_PLIST_LENGTH EQU *-BKWVBN_PLIST SSA01750
 VMASMMAX SSA01760
 SPACE 1 SSA01770
* SSA01780
* find service block SSA01790
* SSA01800
 SPACE 1 SSA01810
 &$XXTRN BKWVFN SSA01820
SSSERVICEFIND EQU BKWVFN SSA01830
 SPACE 1 SSA01840
BKWVFN_PLIST DSECT SSA01850
BKWVFN_PLIST_RC DS A * return code SSA01860
BKWVFN_PLIST_RE DS A * reason code SSA01870
BKWVFN_PLIST_SN DS A * service name SSA01880
BKWVFN_PLIST_SNL DS A * its length SSA01890
BKWVFN_PLIST_SBLK DS A * S-blk address SSA01900
BKWVFN_PLIST_LENGTH EQU *-BKWVFN_PLIST SSA01910
 VMASMMAX SSA01920
 SPACE 1 SSA01930
* SSA01940
* start the server SSA01950
* SSA01960
 SPACE 1 SSA01970
 &$XXTRN BKWVRN SSA01980
SSSERVERRUN EQU BKWVRN SSA01990
 SPACE 1 SSA02000
BKWVRN_PLIST DSECT SSA02010
BKWVRN_PLIST_RC DS A * return code SSA02020
BKWVRN_PLIST_RE DS A * reason code SSA02030
BKWVRN_PLIST_EPLIST DS A * ADDR OF EPLIST SSA02040
BKWVRN_PLIST_LENGTH EQU *-BKWVRN_PLIST SSA02050
 VMASMMAX SSA02060
 SPACE 1 SSA02070
* SSA02080
* stop the server SSA02090
* SSA02100
 SPACE 1 SSA02110

Appendix I. Language Bindings 435

 &$XXTRN BKWVSP SSA02120
SSSERVERSTOP EQU BKWVSP SSA02130
 SPACE 1 SSA02140
BKWVSP_PLIST DSECT SSA02150
BKWVSP_PLIST_RC DS A * return code SSA02160
BKWVSP_PLIST_RE DS A * reason code SSA02170
BKWVSP_PLIST_LENGTH EQU *-BKWVSP_PLIST SSA02180
 VMASMMAX SSA02190
 SPACE 1 SSA02200
-- SSA02210
* End of declarations * SSA02220
-- SSA02230
 EJECT SSA02240
 POP PRINT SSA02250
 MEND SSA02260

Trie Bindings (SSASMTRI MACRO)

 MACRO SSA00010
 SSASMTRI &WEAK= SSA00020
 AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel services bindings * SSA00070
.* * SSA00080
.* FUNCTION - Language bindings for trie API * SSA00090
.* * SSA00100
.* * SSA00110
.* COPYRIGHT - * SSA00120
.* * SSA00130
.* THIS MODULE IS "RESTRICTED MATERIALS OF IBM" * SSA00140
.* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999 * SSA00150
.* LICENSED MATERIALS - PROPERTY OF IBM * SSA00160
.* ALL RIGHTS RESERVED. * SSA00170
.* * SSA00180
.* STATUS - VM/ESA Version 2, Release 4.0 * SSA00190
.* * SSA00200
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4.0 * SSA00210
.** SSA00220
.* A000000-999999 New for VM/ESA Version 2 Release 4.0 @VR74PVM SSA00230
.** SSA00240
.@ASMSR1 ANOP SSA00250
 PUSH PRINT SSA00260
 AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00270
 PRINT OFF,NOGEN SSA00280
.ASMSR2 ANOP SSA00290
 LCLC &$XXTRN SSA00300
&$XXTRN SETC 'EXTRN' SSA00310
 AIF ('&WEAK' NE 'YES').ASMSR3 SSA00320
&$XXTRN SETC 'WXTRN' SSA00330
.ASMSR3 ANOP SSA00340
-- SSA00350
* return and reason codes, and other constants * SSA00360
-- SSA00370
 SPACE 1 SSA00380
* SSA00390
* return codes SSA00400
SS_TRI_RC_SUCCESS EQU 0 SSA00410
SS_TRI_RC_WARNING EQU 4 SSA00420
SS_TRI_RC_ERROR EQU 8 SSA00430
SS_TRI_RC_ABEND EQU 12 SSA00440
* SSA00450
* reason codes SSA00460
SS_TRI_RE_SUCCESS EQU 0 SSA00470
SS_TRI_RE_BAD_SIZE EQU 1701 SSA00480
SS_TRI_RE_TRIE_EXISTS EQU 1702 SSA00490
SS_TRI_RE_OUT_OF_STORAGE EQU 1703 SSA00500
SS_TRI_RE_DSCR_FAIL EQU 1704 SSA00510
SS_TRI_RE_TRIE_NOT_FOUND EQU 1705 SSA00520
SS_TRI_RE_TRIE_BUSY EQU 1706 SSA00530
SS_TRI_RE_BAD_INDEX_LEN EQU 1707 SSA00540
SS_TRI_RE_BAD_CAPACITY EQU 1708 SSA00550
SS_TRI_RE_OUT_OF_DS_STORAGE EQU 1709 SSA00560
* SSA00570
 SPACE 1 SSA00580
-- SSA00590
* entry point definitions * SSA00600
-- SSA00610

436 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 SPACE 1 SSA00620
* SSA00630
* routine to create a trie SSA00640
* SSA00650
 SPACE 1 SSA00660
 &$XXTRN BKWYCR SSA00670
SSTRIECREATE EQU BKWYCR SSA00680
 SPACE 1 SSA00690
BKWYCR_PLIST DSECT SSA00700
BKWYCR_PLIST_RC DS A * return code SSA00710
BKWYCR_PLIST_RE DS A * reason code SSA00720
BKWYCR_PLIST_NAME DS A * trie name SSA00730
BKWYCR_PLIST_DS_SIZE DS A * DS size SSA00740
BKWYCR_PLIST_ASIT DS A * DS ASIT SSA00750
BKWYCR_PLIST_ALET DS A * DS ALET SSA00760
BKWYCR_PLIST_LENGTH EQU *-BKWYCR_PLIST SSA00770
 VMASMMAX SSA00780
 SPACE 1 SSA00790
* SSA00800
* routine to delete a trie SSA00810
* SSA00820
 SPACE 1 SSA00830
 &$XXTRN BKWYDE SSA00840
SSTRIEDELETE EQU BKWYDE SSA00850
 SPACE 1 SSA00860
BKWYDE_PLIST DSECT SSA00870
BKWYDE_PLIST_RC DS A * return code SSA00880
BKWYDE_PLIST_RE DS A * reason code SSA00890
BKWYDE_PLIST_NAME DS A * trie name SSA00900
BKWYDE_PLIST_LENGTH EQU *-BKWYDE_PLIST SSA00910
 SPACE 1 SSA00920
* SSA00930
* routine to insert a record number SSA00940
* SSA00950
 SPACE 1 SSA00960
 &$XXTRN BKWYRI SSA00970
SSTRIERECORDINSERT EQU BKWYRI SSA00980
 SPACE 1 SSA00990
BKWYRI_PLIST DSECT SSA01000
BKWYRI_PLIST_RC DS A * return code SSA01010
BKWYRI_PLIST_RE DS A * reason code SSA01020
BKWYRI_PLIST_NAME DS A * trie name SSA01030
BKWYRI_PLIST_ALET DS A * DS ALET SSA01040
BKWYRI_PLIST_RECNUM DS A * record number SSA01050
BKWYRI_PLIST_IX_BUFFER DS A * index buffer SSA01060
BKWYRI_PLIST_IX_LENGTH DS A * index length SSA01070
BKWYRI_PLIST_LENGTH EQU *-BKWYRI_PLIST SSA01080
 VMASMMAX SSA01090
 SPACE 1 SSA01100
* SSA01110
* routine to list all record numbers matching proposed key SSA01120
* SSA01130
 SPACE 1 SSA01140
 &$XXTRN BKWYRL SSA01150
SSTRIERECORDLIST EQU BKWYRL SSA01160
 SPACE 1 SSA01170
BKWYRL_PLIST DSECT SSA01180
BKWYRL_PLIST_RC DS A * return code SSA01190
BKWYRL_PLIST_RE DS A * reason code SSA01200
BKWYRL_PLIST_NAME DS A * trie name SSA01210
BKWYRL_PLIST_ALET DS A * DS ALET SSA01220
BKWYRL_PLIST_IX_BUFFER DS A * index buffer SSA01230
BKWYRL_PLIST_IX_LENGTH DS A * index length SSA01240
BKWYRL_PLIST_RECNUM_ARRAY DS A * recnum array SSA01250
BKWYRL_PLIST_RECNUM_ARRAY_CAP DS A * array capacity SSA01260
BKWYRL_PLIST_RECNUMS_FOUND DS A * recnums found SSA01270
BKWYRL_PLIST_LENGTH EQU *-BKWYRL_PLIST SSA01280
 VMASMMAX SSA01290
 SPACE 1 SSA01300
-- SSA01310
* End of declarations * SSA01320
-- SSA01330
 EJECT SSA01340
 POP PRINT SSA01350
 MEND SSA01360

Appendix I. Language Bindings 437

User ID Bindings (SSASMUID MACRO)

 MACRO SSA00010
 SSASMUID &WEAK= SSA00020
 AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel services bindings * SSA00070
.* * SSA00080
.* FUNCTION - Language bindings for userid service * SSA00090
.* * SSA00100
.* COPYRIGHT - @VR2OZOZ SSA00110
.* @VR2OZOZ SSA00120
.* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ SSA00130
.* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ SSA00140
.* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ SSA00150
.* ALL RIGHTS RESERVED @VR2OZOZ SSA00160
.* * SSA00170
.* STATUS - Version 2 Release 4 @VR2OZOZ SSA00180
.* * SSA00190
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 * SSA00200
.** SSA00210
.* A000000-999999 New for VM/ESA Version 2 Release 4 @VR24PVM SSA00220
.** SSA00230
.@ASMSR1 ANOP SSA00240
 PUSH PRINT SSA00250
 AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00260
 PRINT OFF,NOGEN SSA00270
.ASMSR2 ANOP SSA00280
 LCLC &$XXTRN SSA00290
&$XXTRN SETC 'EXTRN' SSA00300
 AIF ('&WEAK' NE 'YES').ASMSR3 SSA00310
&$XXTRN SETC 'WXTRN' SSA00320
.ASMSR3 ANOP SSA00330
-- SSA00340
* return and reason codes for userid service * SSA00350
-- SSA00360
 SPACE 1 SSA00370
* SSA00380
* return codes SSA00390
SS_UID_RC_SUCCESS EQU 0 SSA00400
SS_UID_RC_WARNING EQU 4 SSA00410
SS_UID_RC_ERROR EQU 8 SSA00420
SS_UID_RC_ABEND EQU 12 SSA00430
* SSA00440
* reason codes SSA00450
SS_UID_RE_SUCCESS EQU 0 SSA00460
SS_UID_RE_NOT_FOUND EQU 101 SSA00470
* SSA00480
* config constants SSA00490
SS_UID_INDEX_WIDTH EQU 64 SSA00500
 SPACE 1 SSA00510
-- SSA00520
* definitions for userid service * SSA00530
-- SSA00540
 SPACE 1 SSA00550
* SSA00560
* routine to map user IDs SSA00570
* SSA00580
 SPACE 1 SSA00590
 &$XXTRN BKWBMU SSA00600
SSUSERIDMAP EQU BKWBMU SSA00610
 SPACE 1 SSA00620
BKWBMU_PLIST DSECT SSA00630
BKWBMU_PLIST_RC DS A * return code SSA00640
BKWBMU_PLIST_RE DS A * reason code SSA00650
BKWBMU_PLIST_IC DS A * input conn SSA00660
BKWBMU_PLIST_ICL DS A * its length SSA00670
BKWBMU_PLIST_IN DS A * input node SSA00680
BKWBMU_PLIST_INL DS A * its length SSA00690
BKWBMU_PLIST_IU DS A * input user SSA00700
BKWBMU_PLIST_IUL DS A * its length SSA00710
BKWBMU_PLIST_OU DS A * output user SSA00720
BKWBMU_PLIST_OUL DS A * its length SSA00730
BKWBMU_PLIST_LENGTH EQU *-BKWBMU_PLIST SSA00740
 VMASMMAX SSA00750
 SPACE 1 SSA00760
-- SSA00770
* End of declarations * SSA00780

438 z/VM: Reusable Server Kernel Prog. Guide & Ref.

-- SSA00790
 EJECT SSA00800
 POP PRINT SSA00810
 MEND SSA00820

Worker Bindings (SSASMWRK MACRO)

 MACRO SSA00010
 SSASMWRK &WEAK= SSA00020
 AGO .@ASMSR1 SSA00030
.* Branch around prolog so it is not included in listings * SSA00040
.** SSA00050
.* * SSA00060
.* NAME - Reusable Server Kernel services bindings * SSA00070
.* * SSA00080
.* FUNCTION - Language bindings for worker API * SSA00090
.* * SSA00100
.* * SSA00110
.* COPYRIGHT - * SSA00120
.* * SSA00130
.* THIS MODULE IS "RESTRICTED MATERIALS OF IBM" * SSA00140
.* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999 * SSA00150
.* LICENSED MATERIALS - PROPERTY OF IBM * SSA00160
.* ALL RIGHTS RESERVED. * SSA00170
.* * SSA00180
.* STATUS - VM/ESA Version 2, Release 4.0 * SSA00190
.* * SSA00200
.* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 3.0 * SSA00210
.* @SI124VM - alternate userid * SSA00220
.* * SSA00230
.** SSA00240
.* A000000-999999 New for VM/ESA Version 2 Release 3.0 @VR74PVM SSA00250
.** SSA00260
.@ASMSR1 ANOP SSA00270
 PUSH PRINT SSA00280
 AIF ('&SYSPARM' NE 'SUP').ASMSR2 SSA00290
 PRINT OFF,NOGEN SSA00300
.ASMSR2 ANOP SSA00310
 LCLC &$XXTRN SSA00320
&$XXTRN SETC 'EXTRN' SSA00330
 AIF ('&WEAK' NE 'YES').ASMSR3 SSA00340
&$XXTRN SETC 'WXTRN' SSA00350
.ASMSR3 ANOP SSA00360
-- SSA00370
* return and reason codes for userid service * SSA00380
-- SSA00390
 SPACE 1 SSA00400
* SSA00410
* return codes SSA00420
SS_WRK_RC_SUCCESS EQU 0 SSA00430
SS_WRK_RC_WARNING EQU 4 SSA00440
SS_WRK_RC_ERROR EQU 8 SSA00450
SS_WRK_RC_ABEND EQU 12 SSA00460
* SSA00470
* reason codes SSA00480
SS_WRK_RE_SUCCESS EQU 0 SSA00490
SS_WRK_RE_OUT_OF_STORAGE EQU 1601 SSA00500
SS_WRK_RE_BAD_COUNT EQU 1602 SSA00510
SS_WRK_RE_BAD_FLAG_NAME EQU 1603 SSA00520
SS_WRK_RE_BAD_FLAG_VALUE EQU 1604 SSA00530
SS_WRK_RE_NO_CLASS EQU 1605 SSA00540
SS_WRK_RE_NO_SUBORDINATES EQU 1606 SSA00550
SS_WRK_RE_ALGTRIES_EXCEEDED EQU 1607 SSA00560
SS_WRK_RE_AUTOLOG_FAIL EQU 1608 SSA00570
SS_WRK_RE_TIMER_FAIL EQU 1609 SSA00580
SS_WRK_RE_IUCVCON_FAIL EQU 1610 SSA00590
SS_WRK_RE_FORCE_FAIL EQU 1611 SSA00600
SS_WRK_RE_FORCE_TIMEOUT EQU 1612 SSA00610
SS_WRK_RE_OPER_DELETE EQU 1613 SSA00620
* SSA00630
* option flag names SSA00640
SS_WRK_OFN_PREFER_EMPTY EQU 0 SSA00650
SS_WRK_OFN_RETRY_COUNT EQU 1 SSA00660
SS_WRK_OFN_ALT_USERID EQU 2 @SI124VM SSA00670
SS_WRK_OFN_ALT_SECLABEL EQU 3 @SI124VM SSA00680
* SSA00690
* option value names SSA00700
SS_WRK_OFV_NO EQU 0 SSA00710
SS_WRK_OFV_YES EQU 1 SSA00720

Appendix I. Language Bindings 439

 SPACE 1 SSA00730
-- SSA00740
* definitions for worker API * SSA00750
-- SSA00760
 SPACE 1 SSA00770
* SSA00780
* routine to allocate a worker connection SSA00790
* SSA00800
 SPACE 1 SSA00810
 &$XXTRN BKWCAL SSA00820
SSWORKERALLOCATE EQU BKWCAL SSA00830
 SPACE 1 SSA00840
BKWCAL_PLIST DSECT SSA00850
BKWCAL_PLIST_RC DS A * return code SSA00860
BKWCAL_PLIST_RE DS A * reason code SSA00870
BKWCAL_PLIST_ICBLOCK DS A * instance C-block ptr SSA00880
BKWCAL_PLIST_CLASSNAME DS A * class name SSA00890
BKWCAL_PLIST_OCOUNT DS A * option count SSA00900
BKWCAL_PLIST_ONAMES DS A * option names SSA00910
BKWCAL_PLIST_OVALUES DS A * option values SSA00920
BKWCAL_PLIST_WCBLOCK DS A * worker C-block ptr SSA00930
BKWCAL_PLIST_CONNID DS A * connection ID SSA00940
BKWCAL_PLIST_LENGTH EQU *-BKWCAL_PLIST SSA00950
 VMASMMAX SSA00960
 SPACE 1 SSA00970
-- SSA00980
* End of declarations * SSA00990
-- SSA01000
 EJECT SSA01010
 POP PRINT SSA01020
 MEND SSA01030

PL/X Language Bindings

Anchor Bindings (SSPLXANC COPY)

*COPY SSPLXANC SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for anchor services. */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 Declare SSP00200
 SSP00210
 /* constants */ SSP00220
 SSP00230
 /* return codes */ SSP00240
 ss_anc_rc_success fixed(31) constant(0), SSP00250
 ss_anc_rc_warning fixed(31) constant(4), SSP00260
 ss_anc_rc_error fixed(31) constant(8), SSP00270
 ss_anc_rc_abend fixed(31) constant(12), SSP00280
 SSP00290
 /* reason codes */ SSP00300
 ss_anc_re_success fixed(31) constant(0), SSP00310
 SSP00320
 /* entry points */ SSP00330
 SSP00340
 /* set anchor */ SSP00350
 ssAnchorSet entry SSP00360
 (SSP00370
 fixed(31), /* return code */ SSP00380
 fixed(31), /* reason code */ SSP00390
 pointer(31) /* anchor value */ SSP00400

440 z/VM: Reusable Server Kernel Prog. Guide & Ref.

) SSP00410
 external as ('BKWAST'), SSP00420
 SSP00430
 /* get anchor */ SSP00440
 ssAnchorGet entry SSP00450
 (SSP00460
 fixed(31), /* return code */ SSP00470
 fixed(31), /* reason code */ SSP00480
 pointer(31), /* anchor value */ SSP00490
 pointer(31), /* monitor buf */ SSP00500
 fixed(31) /* monitor len */ SSP00510
) SSP00520
 external as ('BKWAGT'); SSP00530
 SSP00540

Authorization Bindings (SSPLXAUT COPY)

*COPY SSPLXAUT SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X Bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for authorization services. */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 /**/ SSP00200
 /* CONSTANTS */ SSP00210
 /**/ SSP00220
 SSP00230
 Declare SSP00240
 SSP00250
 /* return codes */ SSP00260
 ss_aut_rc_success fixed(31) constant(0), SSP00270
 ss_aut_rc_warning fixed(31) constant(4), SSP00280
 ss_aut_rc_error fixed(31) constant(8), SSP00290
 ss_aut_rc_abend fixed(31) constant(12), SSP00300
 SSP00310
 /* reason codes */ SSP00320
 ss_aut_re_success fixed(31) constant(0), SSP00330
 ss_aut_re_bad_count fixed(31) constant(300+1), SSP00340
 ss_aut_re_bad_user_length fixed(31) constant(300+2), SSP00350
 ss_aut_re_bad_obj_length fixed(31) constant(300+3), SSP00360
 ss_aut_re_bad_option fixed(31) constant(300+4), SSP00370
 ss_aut_re_bad_qual fixed(31) constant(300+5), SSP00380
 ss_aut_re_bad_use fixed(31) constant(300+6), SSP00390
 ss_aut_re_exists fixed(31) constant(300+7), SSP00400
 ss_aut_re_no_class fixed(31) constant(300+8), SSP00410
 ss_aut_re_no_object fixed(31) constant(300+9), SSP00420
 ss_aut_re_maq_fail fixed(31) constant(300+10), SSP00430
 ss_aut_re_cvw_fail fixed(31) constant(300+11), SSP00440
 ss_aut_re_cvs_fail fixed(31) constant(300+12), SSP00450
 ss_aut_re_mr_fail fixed(31) constant(300+13), SSP00460
 ss_aut_re_too_many fixed(31) constant(300+14), SSP00470
 ss_aut_re_out_of_storage fixed(31) constant(300+15), SSP00480
 ss_aut_re_no_user fixed(31) constant(300+16), SSP00490
 ss_aut_re_prev_io_error fixed(31) constant(300+17), SSP00500
 ss_aut_re_prev_sync_error fixed(31) constant(300+18), SSP00510
 ss_aut_re_read_fail fixed(31) constant(300+19), SSP00520
 ss_aut_re_write_fail fixed(31) constant(300+20), SSP00530
 ss_aut_re_trunc fixed(31) constant(300+21), SSP00540
 ss_aut_re_gwu_fail fixed(31) constant(300+22), SSP00550
 ss_aut_re_open_fail fixed(31) constant(300+23), SSP00560
 ss_aut_re_bad_cache fixed(31) constant(300+24), SSP00570
 ss_aut_re_bad_free fixed(31) constant(300+25), SSP00580
 ss_aut_re_bad_op fixed(31) constant(300+26), SSP00590
 SSP00600
 /* other constants */ SSP00610
 SSP00620

Appendix I. Language Bindings 441

 /* return values from ssAuthTestOperations */ SSP00630
 /* and ssAuthPermitUser */ SSP00640
 ss_aut_op_permitted fixed(31) constant(0), SSP00650
 ss_aut_op_not_permitted fixed(31) constant(1), SSP00660
 ss_aut_op_not_defined fixed(31) constant(2), SSP00670
 ss_aut_no_change fixed(31) constant(3), SSP00680
 SSP00690
 /* qualifiers for ssAuthPermitUser */ SSP00700
 ss_aut_add_operation fixed(31) constant(0), SSP00710
 ss_aut_remove_operation fixed(31) constant(1), SSP00720
 SSP00730
 /* use arrays in ssAuthPermitUser? */ SSP00740
 ss_aut_use_arrays fixed(31) constant(0), SSP00750
 ss_aut_delete_all fixed(31) constant(1), SSP00760
 ss_aut_add_all fixed(31) constant(2), SSP00770
 SSP00780
 /* qualifiers for ssAuthDeleteObject */ SSP00790
 ss_aut_rules_only fixed(31) constant(0), SSP00800
 ss_aut_rules_and_object fixed(31) constant(1), SSP00810
 SSP00820
 /* qualifiers for ssAuthDeleteUser */ SSP00830
 ss_aut_specific_class fixed(31) constant(0), SSP00840
 ss_aut_all_classes fixed(31) constant(1), SSP00850
 SSP00860
 /* qualifiers for ssAuthDeleteClass */ SSP00870
 ss_aut_objects_only fixed(31) constant(0), SSP00880
 ss_aut_objects_and_class fixed(31) constant(1); SSP00890
 SSP00900
 /**/ SSP00910
 /* ENTRY POINTS */ SSP00920
 /**/ SSP00930
 SSP00940
 Declare SSP00950
 SSP00960
 /**/ SSP00970
 /* operations on classes */ SSP00980
 /**/ SSP00990
 SSP01000
 /* create class */ SSP01010
 ssAuthCreateClass entry SSP01020
 (SSP01030
 fixed(31), /* return code */ SSP01040
 fixed(31), /* reason code */ SSP01050
 character(8), /* class identifier */ SSP01060
 fixed(31), /* operation count */ SSP01070
 character(4) /* operation array */ SSP01080
) SSP01090
 external as ('BKWUCC'), SSP01100
 SSP01110
 /* modify class */ SSP01120
 ssAuthModifyClass entry SSP01130
 (SSP01140
 fixed(31), /* return code */ SSP01150
 fixed(31), /* reason code */ SSP01160
 character(8), /* class identifier */ SSP01170
 fixed(31), /* operation count */ SSP01180
 character(4) /* operation array */ SSP01190
) SSP01200
 external as ('BKWUMC'), SSP01210
 SSP01220
 /* list classes */ SSP01230
 ssAuthListClasses entry SSP01240
 (SSP01250
 fixed(31), /* return code */ SSP01260
 fixed(31), /* reason code */ SSP01270
 char(*), /* match key */ SSP01280
 fixed(31), /* match key length */ SSP01290
 fixed(31), /* number expected */ SSP01300
 char(*), /* output buffer */ SSP01310
 fixed(31) /* number returned */ SSP01320
) SSP01330
 external as ('BKWULC'), SSP01340
 SSP01350
 /* delete class */ SSP01360
 ssAuthDeleteClass entry SSP01370
 (SSP01380
 fixed(31), /* return code */ SSP01390
 fixed(31), /* reason code */ SSP01400
 character(8), /* class identifier */ SSP01410
 fixed(31), /* options count */ SSP01420
 fixed(31) /* options array */ SSP01430
) SSP01440

442 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 external as ('BKWUDC'), SSP01450
 SSP01460
 /**/ SSP01470
 /* operations on objects */ SSP01480
 /**/ SSP01490
 SSP01500
 /* create object */ SSP01510
 ssAuthCreateObject entry SSP01520
 (SSP01530
 fixed(31), /* return code */ SSP01540
 fixed(31), /* reason code */ SSP01550
 character(*), /* object name */ SSP01560
 fixed(31), /* its length */ SSP01570
 character(8) /* object class */ SSP01580
) SSP01590
 external as ('BKWUCO'), SSP01600
 SSP01610
 /* list objects in class */ SSP01620
 ssAuthListObjects entry SSP01630
 (SSP01640
 fixed(31), /* return code */ SSP01650
 fixed(31), /* reason code */ SSP01660
 char(8), /* class name */ SSP01670
 char(*), /* match key */ SSP01680
 fixed(31), /* match key length */ SSP01690
 fixed(31), /* number expected */ SSP01700
 pointer(31), /* buffer pointers */ SSP01710
 fixed(31), /* buffer sizes */ SSP01720
 fixed(31), /* returned lengths */ SSP01730
 fixed(31) /* number returned */ SSP01740
) SSP01750
 external as ('BKWULO'), SSP01760
 SSP01770
 /* query an object */ SSP01780
 ssAuthQueryObject entry SSP01790
 (SSP01800
 fixed(31), /* return code */ SSP01810
 fixed(31), /* reason code */ SSP01820
 character(*), /* object name */ SSP01830
 fixed(31), /* its length */ SSP01840
 character(8), /* class name */ SSP01850
 fixed(31), /* userids expected */ SSP01860
 pointer(31), /* userid ptrs */ SSP01870
 fixed(31), /* userid buf sizes */ SSP01880
 fixed(31), /* userid lengths */ SSP01890
 fixed(31) /* userids returned */ SSP01900
) SSP01910
 external as ('BKWUQO'), SSP01920
 SSP01930
 /* delete object */ SSP01940
 ssAuthDeleteObject entry SSP01950
 (SSP01960
 fixed(31), /* return code */ SSP01970
 fixed(31), /* reason code */ SSP01980
 character(*), /* object name */ SSP01990
 fixed(31), /* its length */ SSP02000
 fixed(31), /* options count */ SSP02010
 fixed(31) /* options array */ SSP02020
) SSP02030
 external as ('BKWUDO'), SSP02040
 SSP02050
 /**/ SSP02060
 /* operations on users */ SSP02070
 /**/ SSP02080
 SSP02090
 /* permit user */ SSP02100
 ssAuthPermitUser entry SSP02110
 (SSP02120
 fixed(31), /* return code */ SSP02130
 fixed(31), /* reason code */ SSP02140
 character(*), /* user name */ SSP02150
 fixed(31), /* its length */ SSP02160
 character(*), /* object name */ SSP02170
 fixed(31), /* its length */ SSP02180
 fixed(31), /* use arrays? */ SSP02190
 fixed(31), /* operation count */ SSP02200
 character(4), /* operation array */ SSP02210
 fixed(31), /* op qualifiers */ SSP02220
 fixed(31) /* op results */ SSP02230
) SSP02240
 external as ('BKWUPU'), SSP02250
 SSP02260

Appendix I. Language Bindings 443

 /* query specific rule */ SSP02270
 ssAuthQueryRule entry SSP02280
 (SSP02290
 fixed(31), /* return code */ SSP02300
 fixed(31), /* reason code */ SSP02310
 character(*), /* user name */ SSP02320
 fixed(31), /* its length */ SSP02330
 character(*), /* object name */ SSP02340
 fixed(31), /* its length */ SSP02350
 fixed(31), /* ops expected */ SSP02360
 character(4), /* operation array */ SSP02370
 fixed(31) /* ops returned */ SSP02380
) SSP02390
 external as ('BKWUQR'), SSP02400
 SSP02410
 /* test operations */ SSP02420
 ssAuthTestOperations entry SSP02430
 (SSP02440
 fixed(31), /* return code */ SSP02450
 fixed(31), /* reason code */ SSP02460
 character(*), /* user name */ SSP02470
 fixed(31), /* its length */ SSP02480
 character(*), /* object name */ SSP02490
 fixed(31), /* its length */ SSP02500
 fixed(31), /* operation count */ SSP02510
 character(4), /* desired ops */ SSP02520
 fixed(31) /* test results */ SSP02530
) SSP02540
 external as ('BKWUTO'), SSP02550
 SSP02560
 /* delete user */ SSP02570
 ssAuthDeleteUser entry SSP02580
 (SSP02590
 fixed(31), /* return code */ SSP02600
 fixed(31), /* reason code */ SSP02610
 character(*), /* user name */ SSP02620
 fixed(31), /* its length */ SSP02630
 character(8), /* class name */ SSP02640
 fixed(31), /* options count */ SSP02650
 fixed(31) /* options array */ SSP02660
) SSP02670
 external as ('BKWUDU'), SSP02680
 SSP02690
 /**/ SSP02700
 /* utility functions */ SSP02710
 /**/ SSP02720
 SSP02730
 /* try to reset access to data files */ SSP02740
 ssAuthReload entry SSP02750
 (SSP02760
 fixed(31), /* return code */ SSP02770
 fixed(31) /* reason code */ SSP02780
) SSP02790
 external as ('BKWURL'); SSP02800
 SSP02810

Cache Bindings (SSPLXCAC COPY)

*COPY SSPLXCAC SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for file cache. */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 /**/ SSP00200
 /* CONSTANTS */ SSP00210

444 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 /**/ SSP00220
 SSP00230
 Declare SSP00240
 SSP00250
 /* return codes */ SSP00260
 ss_cac_rc_success fixed(31) constant(0), SSP00270
 ss_cac_rc_warning fixed(31) constant(4), SSP00280
 ss_cac_rc_error fixed(31) constant(8), SSP00290
 ss_cac_rc_abend fixed(31) constant(12), SSP00300
 SSP00310
 /* reason codes */ SSP00320
 ss_cac_re_success fixed(31) constant(0), SSP00330
 ss_cac_re_out_of_storage fixed(31) constant(1501), SSP00340
 ss_cac_re_table_replaced fixed(31) constant(1502), SSP00350
 ss_cac_re_cache_not_found fixed(31) constant(1503), SSP00360
 ss_cac_re_dscr_fail fixed(31) constant(1504), SSP00370
 ss_cac_re_cache_exists fixed(31) constant(1505), SSP00380
 ss_cac_re_bad_size fixed(31) constant(1506), SSP00390
 ss_cac_re_bad_token fixed(31) constant(1511), SSP00400
 ss_cac_re_bad_length fixed(31) constant(1512), SSP00410
 ss_cac_re_bad_count fixed(31) constant(1513), SSP00420
 ss_cac_re_bad_esmdl fixed(31) constant(1514), SSP00430
 ss_cac_re_bad_fname fixed(31) constant(1515), SSP00440
 ss_cac_re_bad_fval fixed(31) constant(1516), SSP00450
 ss_cac_re_exist_fail fixed(31) constant(1517), SSP00460
 ss_cac_re_file_not_found fixed(31) constant(1518), SSP00470
 ss_cac_re_delete_in_progress fixed(31) constant(1519), SSP00480
 ss_cac_re_bad_offset fixed(31) constant(1520), SSP00490
 ss_cac_re_bad_table_id fixed(31) constant(1521), SSP00500
 ss_cac_re_table_not_found fixed(31) constant(1522), SSP00510
 ss_cac_re_open_fail fixed(31) constant(1523), SSP00520
 ss_cac_re_bad_recfm fixed(31) constant(1524), SSP00530
 ss_cac_re_bad_lrecl fixed(31) constant(1525), SSP00540
 ss_cac_re_out_of_storage_ds fixed(31) constant(1526), SSP00550
 ss_cac_re_read_fail fixed(31) constant(1527), SSP00560
 ss_cac_re_bad_data_stream fixed(31) constant(1528), SSP00570
 SSP00580
 /* open flag names */ SSP00590
 ss_cac_ofn_xlate fixed(31) constant(0), SSP00600
 ss_cac_ofn_preserve_dolr fixed(31) constant(1), SSP00610
 ss_cac_ofn_bfs fixed(31) constant(2), SSP00620
 ss_cac_ofn_recmethod_fs fixed(31) constant(3), SSP00630
 ss_cac_ofn_recmethod_cache fixed(31) constant(4), SSP00640
 SSP00650
 /* open flag values */ SSP00660
 ss_cac_ofv_no fixed(31) constant(0), SSP00670
 ss_cac_ofv_yes fixed(31) constant(1); SSP00680
 SSP00690
 /**/ SSP00700
 /* STRUCTURES */ SSP00710
 /**/ SSP00720
 SSP00730
 /**/ SSP00740
 /* FUNCTIONS */ SSP00750
 /**/ SSP00760
 SSP00770
 Declare SSP00780
 SSP00790
 /**/ SSP00800
 /* cache creation and deletion */ SSP00810
 /**/ SSP00820
 SSP00830
 /* create a cache */ SSP00840
 ssCacheCreate entry SSP00850
 (SSP00860
 fixed(31), /* return code */ SSP00870
 fixed(31), /* reason code */ SSP00880
 char(8), /* cache name */ SSP00890
 fixed(31), /* pages rqstd */ SSP00900
 fixed(31) /* ALET */ SSP00910
) SSP00920
 external as ('BKWOCC'), SSP00930
 SSP00940
 /* delete a cache */ SSP00950
 ssCacheDelete entry SSP00960
 (SSP00970
 fixed(31), /* return code */ SSP00980
 fixed(31), /* reason code */ SSP00990
 char(8) /* cache name */ SSP01000
) SSP01010
 external as ('BKWOCD'), SSP01020
 SSP01030

Appendix I. Language Bindings 445

 /**/ SSP01040
 /* utility functions */ SSP01050
 /**/ SSP01060
 SSP01070
 /* queries cache utilitization */ SSP01080
 ssCacheQuery entry SSP01090
 (SSP01100
 fixed(31), /* return code */ SSP01110
 fixed(31), /* reason code */ SSP01120
 char(8), /* cache name */ SSP01130
 fixed(31), /* files cached */ SSP01140
 fixed(31), /* cache size */ SSP01150
 fixed(31), /* amt in use */ SSP01160
 fixed(31), /* open count */ SSP01170
 fixed(31) /* hit count */ SSP01180
) SSP01190
 external as ('BKWOCQ'), SSP01200
 SSP01210
 /* sets translation table */ SSP01220
 ssCacheXlTabSet entry SSP01230
 (SSP01240
 fixed(31), /* return code */ SSP01250
 fixed(31), /* reason code */ SSP01260
 fixed(31), /* table ID */ SSP01270
 char(256) /* table */ SSP01280
) SSP01290
 external as ('BKWOTS'), SSP01300
 SSP01310
 /**/ SSP01320
 /* file management primitives */ SSP01330
 /**/ SSP01340
 SSP01350
 /* begin using cached file */ SSP01360
 ssCacheFileOpen entry SSP01370
 (SSP01380
 fixed(31), /* return code */ SSP01390
 fixed(31), /* reason code */ SSP01400
 char(8), /* cache name */ SSP01410
 char(*), /* file spec */ SSP01420
 fixed(31), /* its length */ SSP01430
 char(*), /* ESM data */ SSP01440
 fixed(31), /* its length */ SSP01450
 fixed(31), /* flag count */ SSP01460
 fixed(31), /* flag name array */ SSP01470
 fixed(31), /* flag value array */ SSP01480
 char(8), /* file token */ SSP01490
 fixed(31), /* ALET */ SSP01500
 pointer(31), /* address */ SSP01510
 fixed(31), /* length */ SSP01520
 char(32) /* last update date */ SSP01530
) SSP01540
 external as ('BKWOFO'), SSP01550
 SSP01560
 /* read cached file */ SSP01570
 ssCacheFileRead entry SSP01580
 (SSP01590
 fixed(31), /* return code */ SSP01600
 fixed(31), /* reason code */ SSP01610
 char(8), /* cache name */ SSP01620
 char(8), /* file token */ SSP01630
 fixed(31), /* byte offset */ SSP01640
 fixed(31), /* num of bytes */ SSP01650
 char(*), /* output buffer */ SSP01660
 fixed(31) /* bytes returned */ SSP01670
) SSP01680
 external as ('BKWOFR'), SSP01690
 SSP01700
 /* done using cached file */ SSP01710
 ssCacheFileClose entry SSP01720
 (SSP01730
 fixed(31), /* return code */ SSP01740
 fixed(31), /* reason code */ SSP01750
 char(8), /* cache name */ SSP01760
 char(8) /* file token */ SSP01770
) SSP01780
 external as ('BKWOFC'); SSP01790
 SSP01800

446 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Client Bindings (SSPLXCLI COPY)

*COPY SSPLXCLI SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for client services */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 /**/ SSP00200
 /* constants */ SSP00210
 /**/ SSP00220
 SSP00230
 Declare SSP00240
 SSP00250
 /* return codes */ SSP00260
 ss_cli_rc_success fixed(31) constant(0), SSP00270
 ss_cli_rc_warning fixed(31) constant(4), SSP00280
 ss_cli_rc_error fixed(31) constant(8), SSP00290
 ss_cli_rc_abend fixed(31) constant(12), SSP00300
 SSP00310
 /* reason codes */ SSP00320
 ss_cli_re_success fixed(31) constant(0), SSP00330
 ss_cli_re_out_of_range fixed(31) constant(900+1), SSP00340
 ss_cli_re_out_of_storage fixed(31) constant(900+2), SSP00350
 ss_cli_re_bad_iam fixed(31) constant(900+3), SSP00360
 ss_cli_re_bad_method fixed(31) constant(900+4), SSP00370
 ss_cli_re_semc_fail fixed(31) constant(900+5), SSP00380
 SSP00390
 /* who i am */ SSP00400
 ss_cli_iam_instance fixed(31) constant(0), SSP00410
 ss_cli_iam_linedriver fixed(31) constant(1), SSP00420
 SSP00430
 /* ways to get data */ SSP00440
 ss_cli_method_read fixed(31) constant(0), SSP00450
 ss_cli_method_peek fixed(31) constant(1), SSP00460
 ss_cli_method_discard fixed(31) constant(2); SSP00470
 SSP00480
 /**/ SSP00490
 /* structures */ SSP00500
 /**/ SSP00510
 SSP00520
 /**/ SSP00530
 /* entry points */ SSP00540
 /**/ SSP00550
 SSP00560
 Declare SSP00570
 SSP00580
 /* initialize client data queues */ SSP00590
 ssClientDataInit entry SSP00600
 (SSP00610
 fixed(31), /* return code */ SSP00620
 fixed(31), /* reason code */ SSP00630
 pointer(31), /* C-block addr */ SSP00640
 char(8) /* subpool name */ SSP00650
) SSP00660
 external as ('BKWIIN'), SSP00670
 SSP00680
 /* terminate client data queues */ SSP00690
 ssClientDataTerm entry SSP00700
 (SSP00710
 fixed(31), /* return code */ SSP00720
 fixed(31), /* reason code */ SSP00730
 pointer(31) /* C-block addr */ SSP00740
) SSP00750
 external as ('BKWITM'), SSP00760
 SSP00770
 /* get input from client C-block */ SSP00780

Appendix I. Language Bindings 447

 ssClientDataGet entry SSP00790
 (SSP00800
 fixed(31), /* return code */ SSP00810
 fixed(31), /* reason code */ SSP00820
 fixed(31), /* instance or ld? */ SSP00830
 pointer(31), /* C-block pointer */ SSP00840
 fixed(31), /* get method */ SSP00850
 fixed(31), /* ALET to use */ SSP00860
 char(*), /* buffer */ SSP00870
 fixed(31), /* amt wanted */ SSP00880
 fixed(31), /* amt given */ SSP00890
 fixed(31) /* amt left */ SSP00900
) SSP00910
 external as ('BKWIDG'), SSP00920
 SSP00930
 /* put output onto client C-block */ SSP00940
 ssClientDataPut entry SSP00950
 (SSP00960
 fixed(31), /* return code */ SSP00970
 fixed(31), /* reason code */ SSP00980
 fixed(31), /* instance or ld? */ SSP00990
 pointer(31), /* C-block pointer */ SSP01000
 fixed(31), /* ALET to use */ SSP01010
 char(*), /* buffer */ SSP01020
 fixed(31), /* amt to put */ SSP01030
 fixed(31) /* new amount */ SSP01040
) SSP01050
 external as ('BKWIDP'); SSP01060
 SSP01070

Enrollment Bindings (SSPLXENR COPY)

*COPY SSPLXENR SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for enrollment services. */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 /***/ SSP00200
 /* CONSTANTS */ SSP00210
 /***/ SSP00220
 SSP00230
 Declare SSP00240
 SSP00250
 /* API maxima */ SSP00260
 ss_enr_index_width fixed(31) constant(64), SSP00270
 ss_enr_max_data fixed(31) constant(65450), SSP00280
 SSP00290
 /* return codes */ SSP00300
 ss_enr_rc_success fixed(31) constant(0), SSP00310
 ss_enr_rc_warning fixed(31) constant(4), SSP00320
 ss_enr_rc_error fixed(31) constant(8), SSP00330
 ss_enr_rc_abend fixed(31) constant(12), SSP00340
 SSP00350
 /* reason codes */ SSP00360
 ss_enr_re_success fixed(31) constant(0), SSP00370
 ss_enr_re_db_not_found fixed(31) constant(1000+1), SSP00380
 ss_enr_re_rec_not_found fixed(31) constant(1000+2), SSP00390
 ss_enr_re_truncated fixed(31) constant(1000+3), SSP00400
 ss_enr_re_dirty fixed(31) constant(1000+4), SSP00410
 ss_enr_re_rec_exists fixed(31) constant(1000+5), SSP00420
 ss_enr_re_bad_length fixed(31) constant(1000+6), SSP00430
 ss_enr_re_bad_droptype fixed(31) constant(1000+7), SSP00440
 ss_enr_re_no_storage fixed(31) constant(1000+8), SSP00450
 ss_enr_re_close_fail fixed(31) constant(1000+9), SSP00460
 ss_enr_re_write_fail fixed(31) constant(1000+10), SSP00470

448 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 ss_enr_re_bad_method fixed(31) constant(1000+11), SSP00480
 ss_enr_re_open_fail fixed(31) constant(1000+12), SSP00490
 ss_enr_re_gwu_fail fixed(31) constant(1000+13), SSP00500
 ss_enr_re_point_fail fixed(31) constant(1000+14), SSP00510
 ss_enr_re_exist_fail fixed(31) constant(1000+15), SSP00520
 ss_enr_re_not_sfs fixed(31) constant(1000+16), SSP00530
 ss_enr_re_not_v fixed(31) constant(1000+17), SSP00540
 ss_enr_re_dscr_fail fixed(31) constant(1000+18), SSP00550
 ss_enr_re_read_fail fixed(31) constant(1000+19), SSP00560
 ss_enr_re_db_exists fixed(31) constant(1000+20), SSP00570
 ss_enr_re_comm_fail fixed(31) constant(1000+21), SSP00580
 ss_enr_re_not_disk fixed(31) constant(1000+22), SSP00590
 ss_enr_re_bad_kind fixed(31) constant(1000+23), SSP00600
 ss_enr_re_new_file fixed(31) constant(1000+24), SSP00610
 ss_enr_re_no_sets fixed(31) constant(1000+25), SSP00620
 ss_enr_re_set_empty fixed(31) constant(1000+26), SSP00630
 SSP00640
 /* KIND types */ SSP00650
 ss_enr_kind_memory fixed(31) constant(0), SSP00660
 ss_enr_kind_disk fixed(31) constant(1), SSP00670
 SSP00680
 /* INSERT types */ SSP00690
 ss_enr_insert_new fixed(31) constant(0), SSP00700
 ss_enr_insert_replace fixed(31) constant(1), SSP00710
 SSP00720
 /* DROP types */ SSP00730
 ss_enr_drop_commit fixed(31) constant(0), SSP00740
 ss_enr_drop_rollback fixed(31) constant(1); SSP00750
 SSP00760
 /***/ SSP00770
 /* ENTRY POINTS */ SSP00780
 /***/ SSP00790
 SSP00800
 Declare SSP00810
 SSP00820
 /* commit enrollment data base */ SSP00830
 ssEnrollCommit entry SSP00840
 (SSP00850
 fixed(31), /* return code */ SSP00860
 fixed(31), /* reason code */ SSP00870
 char(8) /* dbase name */ SSP00880
) SSP00890
 external as ('BKWJCM'), SSP00900
 SSP00910
 /* drop enrollment data base */ SSP00920
 ssEnrollDrop entry SSP00930
 (SSP00940
 fixed(31), /* return code */ SSP00950
 fixed(31), /* reason code */ SSP00960
 char(8), /* dbase name */ SSP00970
 fixed(31) /* drop type */ SSP00980
) SSP00990
 external as ('BKWJDP'), SSP01000
 SSP01010
 /* list data bases */ SSP01020
 ssEnrollList entry SSP01030
 (SSP01040
 fixed(31), /* return code */ SSP01050
 fixed(31), /* reason code */ SSP01060
 pointer(31) /* C-block */ SSP01070
) SSP01080
 external as ('BKWJDL'), SSP01090
 SSP01100
 /* load enrollment data base */ SSP01110
 ssEnrollLoad entry SSP01120
 (SSP01130
 fixed(31), /* return code */ SSP01140
 fixed(31), /* reason code */ SSP01150
 char(8), /* dbase name */ SSP01160
 fixed(31), /* DS kind */ SSP01170
 fixed(31), /* DS size */ SSP01180
 char(*), /* filename */ SSP01190
 fixed(31) /* length of */ SSP01200
) SSP01210
 external as ('BKWJLO'), SSP01220
 SSP01230
 /* get record */ SSP01240
 ssEnrollRecordGet entry SSP01250
 (SSP01260
 fixed(31), /* return code */ SSP01270
 fixed(31), /* reason code */ SSP01280
 char(8), /* dbase name */ SSP01290

Appendix I. Language Bindings 449

 char(ss_enr_index_width), /* index */ SSP01300
 char(*), /* buffer */ SSP01310
 fixed(31), /* buf size */ SSP01320
 fixed(31) /* amt returned */ SSP01330
) SSP01340
 external as ('BKWJRG'), SSP01350
 SSP01360
 /* insert record */ SSP01370
 ssEnrollRecordInsert entry SSP01380
 (SSP01390
 fixed(31), /* return code */ SSP01400
 fixed(31), /* reason code */ SSP01410
 char(8), /* dbase name */ SSP01420
 char(ss_enr_index_width), /* index */ SSP01430
 char(*), /* data */ SSP01440
 fixed(31), /* length */ SSP01450
 fixed(31) /* replace? */ SSP01460
) SSP01470
 external as ('BKWJRI'), SSP01480
 SSP01490
 /* list records */ SSP01500
 ssEnrollRecordList entry SSP01510
 (SSP01520
 fixed(31), /* return code */ SSP01530
 fixed(31), /* reason code */ SSP01540
 char(8), /* dbase name */ SSP01550
 pointer(31) /* C-block */ SSP01560
) SSP01570
 external as ('BKWJRL'), SSP01580
 SSP01590
 /* remove record */ SSP01600
 ssEnrollRecordRemove entry SSP01610
 (SSP01620
 fixed(31), /* return code */ SSP01630
 fixed(31), /* reason code */ SSP01640
 char(8), /* dbase name */ SSP01650
 char(ss_enr_index_width) /* index */ SSP01660
) SSP01670
 external as ('BKWJRR'); SSP01680
 SSP01690

Memory Bindings (SSPLXMEM COPY)

*COPY SSPLXMEM SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for memory services. */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 Declare SSP00200
 SSP00210
 /* return and reason codes */ SSP00220
 ss_mem_rc_success fixed(31) constant(0), SSP00230
 ss_mem_rc_warning fixed(31) constant(4), SSP00240
 ss_mem_rc_error fixed(31) constant(8), SSP00250
 ss_mem_rc_abend fixed(31) constant(12), SSP00260
 SSP00270
 ss_mem_re_success fixed(31) constant(0), SSP00280
 ss_mem_re_out_of_storage fixed(31) constant(800+1), SSP00290
 ss_mem_re_bad_amount fixed(31) constant(800+2), SSP00300
 ss_mem_re_bad_align fixed(31) constant(800+3), SSP00310
 ss_mem_re_no_subpool fixed(31) constant(800+4), SSP00320
 ss_mem_re_not_alloc fixed(31) constant(800+5), SSP00330
 ss_mem_re_subpool_deleted fixed(31) constant(800+6), SSP00340
 ss_mem_re_spd_fail fixed(31) constant(800+7), SSP00350
 ss_mem_re_bad_key fixed(31) constant(800+8), SSP00360

450 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 ss_mem_re_subpool_exists fixed(31) constant(800+9), SSP00370
 ss_mem_re_spcc_fail fixed(31) constant(800+10), SSP00380
 ss_mem_re_spla_fail fixed(31) constant(800+11), SSP00390
 SSP00400
 /* alignment attributes */ SSP00410
 ss_mem_align_norm fixed(31) constant(0), SSP00420
 ss_mem_align_page fixed(31) constant(1), SSP00430
 SSP00440
 /* create a data space we can manage */ SSP00450
 ssMemoryCreateDS entry SSP00460
 (SSP00470
 fixed(31), /* return code */ SSP00480
 fixed(31), /* reason code */ SSP00490
 char(8), /* subpool name */ SSP00500
 fixed(31), /* size (pages) */ SSP00510
 fixed(31), /* storage key */ SSP00520
 fixed(31), /* option count */ SSP00530
 fixed(31), /* option array */ SSP00540
 char(8), /* ASIT */ SSP00550
 fixed(31) /* ALET */ SSP00560
) SSP00570
 external as ('BKWMCR'), SSP00580
 SSP00590
 /* allocate memory */ SSP00600
 ssMemoryAllocate entry SSP00610
 (SSP00620
 fixed(31), /* return code */ SSP00630
 fixed(31), /* reason code */ SSP00640
 fixed(31), /* lower bound */ SSP00650
 fixed(31), /* upper bound */ SSP00660
 character(8), /* subpool name */ SSP00670
 fixed(31), /* alignment rqt */ SSP00680
 pointer(31), /* addr of block */ SSP00690
 fixed(31) /* amount gotten */ SSP00700
) SSP00710
 external as ('BKWMAL'), SSP00720
 SSP00730
 /* release memory */ SSP00740
 ssMemoryRelease entry SSP00750
 (SSP00760
 fixed(31), /* return code */ SSP00770
 fixed(31), /* reason code */ SSP00780
 fixed(31), /* bytes released */ SSP00790
 character(8), /* subpool name */ SSP00800
 pointer(31) /* addr of block */ SSP00810
) SSP00820
 external as ('BKWMRE'), SSP00830
 SSP00840
 /* delete subpool */ SSP00850
 ssMemoryDelete entry SSP00860
 (SSP00870
 fixed(31), /* return code */ SSP00880
 fixed(31), /* reason code */ SSP00890
 character(8) /* subpool name */ SSP00900
) SSP00910
 external as ('BKWMDE'); SSP00920
 SSP00930

Storage Group Bindings (SSPLXSGP COPY)

*COPY SSPLXSGP SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for storage group services. */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190

Appendix I. Language Bindings 451

 /**/ SSP00200
 /* CONSTANTS */ SSP00210
 /**/ SSP00220
 SSP00230
 Declare SSP00240
 SSP00250
 /* return codes */ SSP00260
 ss_sgp_rc_success fixed(31) constant(0), SSP00270
 ss_sgp_rc_warning fixed(31) constant(4), SSP00280
 ss_sgp_rc_error fixed(31) constant(8), SSP00290
 ss_sgp_rc_abend fixed(31) constant(12), SSP00300
 SSP00310
 /* reason codes */ SSP00320
 ss_sgp_re_success fixed(31) constant(0), SSP00330
 ss_sgp_re_too_many fixed(31) constant(600+1), SSP00340
 ss_sgp_re_not_found fixed(31) constant(600+2), SSP00350
 ss_sgp_re_out_of_storage fixed(31) constant(600+3), SSP00360
 ss_sgp_re_mx_fail fixed(31) constant(600+4), SSP00370
 ss_sgp_re_init_done fixed(31) constant(600+5), SSP00380
 ss_sgp_re_exists fixed(31) constant(600+7), SSP00390
 ss_sgp_re_vdq_fail fixed(31) constant(600+8), SSP00400
 ss_sgp_re_online fixed(31) constant(600+9), SSP00410
 ss_sgp_re_offline fixed(31) constant(600+10), SSP00420
 ss_sgp_re_q_fail fixed(31) constant(600+11), SSP00430
 ss_sgp_re_cv_fail fixed(31) constant(600+12), SSP00440
 ss_sgp_re_e_fail fixed(31) constant(600+13), SSP00450
 ss_sgp_re_maint fixed(31) constant(600+14), SSP00460
 ss_sgp_re_ds_fail fixed(31) constant(600+15), SSP00470
 ss_sgp_re_pool_fail fixed(31) constant(600+16), SSP00480
 ss_sgp_re_map_fail fixed(31) constant(600+17), SSP00490
 ss_sgp_re_bad_attrib fixed(31) constant(600+18), SSP00500
 ss_sgp_re_rewrite_fail fixed(31) constant(600+19), SSP00510
 ss_sgp_re_read_only fixed(31) constant(600+20), SSP00520
 ss_sgp_re_out_of_range fixed(31) constant(600+22), SSP00530
 ss_sgp_re_wrong_mode fixed(31) constant(600+23), SSP00540
 ss_sgp_re_io_fail fixed(31) constant(600+24), SSP00550
 ss_sgp_re_diag_250_fail fixed(31) constant(600+25), SSP00560
 ss_sgp_re_too_big fixed(31) constant(600+26), SSP00570
 ss_sgp_re_bad_name fixed(31) constant(600+28), SSP00580
 ss_sgp_re_name_in_use fixed(31) constant(600+29), SSP00590
 SSP00600
 /* attributes */ SSP00610
 ss_sgp_attrib_ds fixed(31) constant(0), SSP00620
 ss_sgp_attrib_no_ds fixed(31) constant(1), SSP00630
 ss_sgp_attrib_block_rw fixed(31) constant(2), SSP00640
 ss_sgp_attrib_block_ro fixed(31) constant(3), SSP00650
 ss_sgp_attrib_offline fixed(31) constant(7); SSP00660
 SSP00670
 /**/ SSP00680
 /* FUNCTIONS */ SSP00690
 /**/ SSP00700
 SSP00710
 Declare SSP00720
 SSP00730
 /* storage group create */ SSP00740
 ssSgpCreate entry SSP00750
 (SSP00760
 fixed(31), /* return code */ SSP00770
 fixed(31), /* reason code */ SSP00780
 fixed(31), /* sg number */ SSP00790
 fixed(31), /* num of vdevs */ SSP00800
 fixed(31), /* vdev array */ SSP00810
 fixed(31), /* attrib count */ SSP00820
 fixed(31) /* attrib array */ SSP00830
) SSP00840
 external as ('BKWSGC'), SSP00850
 SSP00860
 /* storage group delete */ SSP00870
 ssSgpDelete entry SSP00880
 (SSP00890
 fixed(31), /* return code */ SSP00900
 fixed(31), /* reason code */ SSP00910
 fixed(31) /* sg number */ SSP00920
) SSP00930
 external as ('BKWSGD'), SSP00940
 SSP00950
 /* storage group find */ SSP00960
 ssSgpFind entry SSP00970
 (SSP00980
 fixed(31), /* return code */ SSP00990
 fixed(31), /* reason code */ SSP01000
 char(8), /* sg name */ SSP01010

452 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 fixed(31), /* sgp id */ SSP01020
 fixed(31), /* I/O mode */ SSP01030
 fixed(32) /* total blks */ SSP01040
) SSP01050
 external as ('BKWSGF'), SSP01060
 SSP01070
 /* storage group list (what's defined?) */ SSP01080
 ssSgpList entry SSP01090
 (SSP01100
 fixed(31), /* return code */ SSP01110
 fixed(31), /* reason code */ SSP01120
 fixed(31), /* num expected */ SSP01130
 fixed(31), /* number filled in */ SSP01140
 fixed(31) /* array for IDs */ SSP01150
) SSP01160
 external as ('BKWSGL'), SSP01170
 SSP01180
 /* storage group query (details on particular sg) */ SSP01190
 ssSgpQuery entry SSP01200
 (SSP01210
 fixed(31), /* return code */ SSP01220
 fixed(31), /* reason code */ SSP01230
 fixed(31), /* sgp id */ SSP01240
 char(8), /* sg name */ SSP01250
 fixed(31), /* i/o mode */ SSP01260
 fixed(32), /* total blocks */ SSP01270
 fixed(31), /* status word */ SSP01280
 fixed(31), /* attrib expected */ SSP01290
 fixed(31), /* attrib filled in */ SSP01300
 fixed(31), /* attrib array */ SSP01310
 fixed(31), /* vdevs expected */ SSP01320
 fixed(31), /* vdevs filled in */ SSP01330
 fixed(31), /* vdev array */ SSP01340
 fixed(31) /* blks array */ SSP01350
) SSP01360
 external as ('BKWSGQ'), SSP01370
 SSP01380
 /* storage group read */ SSP01390
 ssSgpRead entry SSP01400
 (SSP01410
 fixed(31), /* return code */ SSP01420
 fixed(31), /* reason code */ SSP01430
 fixed(31), /* sgp ID */ SSP01440
 fixed(32), /* page number */ SSP01450
 fixed(32), /* num of pgs */ SSP01460
 fixed(31), /* buffer ALET */ SSP01470
 character(*) /* buffer */ SSP01480
) SSP01490
 external as ('BKWSGR'), SSP01500
 SSP01510
 /* storage group start (like a mount) */ SSP01520
 ssSgpStart entry SSP01530
 (SSP01540
 fixed(31), /* return code */ SSP01550
 fixed(31), /* reason code */ SSP01560
 fixed(31), /* sgp id */ SSP01570
 char(8), /* sgp name */ SSP01580
 fixed(31), /* attrib count */ SSP01590
 fixed(31) /* attrib array */ SSP01600
) SSP01610
 external as ('BKWSGS'), SSP01620
 SSP01630
 /* storage group stop (like a dismount) */ SSP01640
 ssSgpStop entry SSP01650
 (SSP01660
 fixed(31), /* return code */ SSP01670
 fixed(31), /* reason code */ SSP01680
 fixed(31), /* sgp ID */ SSP01690
 fixed(31), /* attrib count */ SSP01700
 fixed(31) /* attrib array */ SSP01710
) SSP01720
 external as ('BKWSGT'), SSP01730
 SSP01740
 /* storage group write */ SSP01750
 ssSgpWrite entry SSP01760
 (SSP01770
 fixed(31), /* return code */ SSP01780
 fixed(31), /* reason code */ SSP01790
 fixed(31), /* sgp ID */ SSP01800
 fixed(32), /* page number */ SSP01810
 fixed(32), /* num of pgs */ SSP01820
 fixed(31), /* buffer ALET */ SSP01830

Appendix I. Language Bindings 453

 character(*) /* buffer */ SSP01840
) SSP01850
 external as ('BKWSGW'); SSP01860
 SSP01870

Services Bindings (SSPLXSRV COPY)

*COPY SSPLXSRV SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for service services. */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 /**/ SSP00200
 /* constants */ SSP00210
 /**/ SSP00220
 SSP00230
 Declare SSP00240
 SSP00250
 /* return codes */ SSP00260
 ss_srv_rc_success fixed(31) constant(0), SSP00270
 ss_srv_rc_warning fixed(31) constant(4), SSP00280
 ss_srv_rc_error fixed(31) constant(8), SSP00290
 ss_srv_rc_abend fixed(31) constant(12), SSP00300
 SSP00310
 /* reason codes */ SSP00320
 ss_srv_re_success fixed(31) constant(0), SSP00330
 ss_srv_re_bad_type fixed(31) constant(700+1), SSP00340
 ss_srv_re_not_found fixed(31) constant(700+2), SSP00350
 ss_srv_re_out_of_range fixed(31) constant(700+3), SSP00360
 ss_srv_re_out_of_storage fixed(31) constant(700+6), SSP00370
 ss_srv_re_exists fixed(31) constant(700+9), SSP00380
 SSP00390
 /* types of messages */ SSP00400
 ss_srv_msgtype_instance fixed(31) constant(0), SSP00410
 ss_srv_msgtype_linedriver fixed(31) constant(1), SSP00420
 SSP00430
 /* types of services */ SSP00440
 ss_srv_srvtype_normal fixed(31) constant(0), SSP00450
 ss_srv_srvtype_ld fixed(31) constant(1), SSP00460
 ss_srv_srvtype_ldss fixed(31) constant(2), SSP00470
 SSP00480
 /* values of various msg bits... these have to line */ SSP00490
 /* up with the message structures below... be careful */ SSP00500
 ss_srv_ibit_cclose fixed(16) constant(32768), SSP00510
 ss_srv_ibit_aclose fixed(16) constant(16384), SSP00520
 ss_srv_ibit_cdone fixed(16) constant(8192), SSP00530
 ss_srv_ibit_ldstop fixed(16) constant(4096), SSP00540
 ss_srv_ibit_newdata fixed(16) constant(2048), SSP00550
 SSP00560
 ss_srv_lbit_stopack fixed(16) constant(32768), SSP00570
 ss_srv_lbit_newdata fixed(16) constant(16384), SSP00580
 SSP00590
 /* length of keys */ SSP00600
 ss_srv_keylength fixed(31) constant(32); SSP00610
 SSP00620
 /**/ SSP00630
 /* structures */ SSP00640
 /**/ SSP00650
 SSP00660
 Declare SSP00670
 SSP00680
 /* S-block */ SSP00690
 1 vmss_sblock Boundary(Word) Based, SSP00700
 5 sbl_next pointer(31), /* next service */ SSP00710
 5 sbl_prev pointer(31), /* prev service */ SSP00720

454 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 5 sbl_sn character(8), /* its name */ SSP00730
 5 sbl_snl fixed(31), /* name length */ SSP00740
 5 sbl_initaddr pointer(31), /* init addr */ SSP00750
 5 sbl_agtaddr pointer(31), /* agent addr */ SSP00760
 5 sbl_cmpladdr pointer(31), /* cmpltn addr */ SSP00770
 5 sbl_type fixed(31), /* service type */ SSP00780
 5 sbl_lockword fixed(31), /* lock word */ SSP00790
 5 sbl_startcount fixed(31), /* start count */ SSP00800
 5 sbl_monptr fixed(31), /* mon buf ptr */ SSP00810
 SSP00820
 /* C-block */ SSP00830
 1 vmss_cblock boundary(word) based, SSP00840
 5 vc_sblock pointer(31), SSP00850
 5 vc_ldname character(8), SSP00860
 5 vc_statbits bit(32), SSP00870
 10 vc_b_record bit(1), SSP00880
 5 vc_qh fixed(31), SSP00890
 5 vc_sid fixed(31), SSP00900
 5 vc_instance fixed(31), SSP00910
 5 vc_threadid fixed(31), SSP00920
 5 vc_ikey character(ss_srv_keylength), SSP00930
 5 vc_lkey character(ss_srv_keylength), SSP00940
 5 vc_userid character(64), SSP00950
 5 vc_bytesin fixed(31), SSP00960
 5 vc_bytesout fixed(31), SSP00970
 5 vc_ibw fixed(31), SSP00980
 5 vc_ldbw fixed(31), SSP00990
 5 vc_startstck char(8), SSP01000
 5 vc_stopstck char(8), SSP01010
 5 vc_reserved char(128), SSP01020
 5 vc_lddata char(0), SSP01030
 SSP01040
 /* msg to instance */ SSP01050
 1 vmss_imsg boundary(word) based, SSP01060
 5 vi_ikey character(ss_srv_keylength), SSP01070
 5 vi_type fixed(31), SSP01080
 5 vi_cbits bit(16), SSP01090
 10 vi_b_cclose bit(1), SSP01100
 10 vi_b_aclose bit(1), SSP01110
 10 vi_b_cdone bit(1), SSP01120
 10 vi_b_ldstop bit(1), SSP01130
 10 vi_b_newdata bit(1), SSP01140
 SSP01150
 /* msg to line driver */ SSP01160
 1 vmss_lmsg boundary(word) based, SSP01170
 5 vl_lkey character(ss_srv_keylength), SSP01180
 5 vl_type fixed(31), SSP01190
 5 vl_ikey character(ss_srv_keylength), SSP01200
 5 vl_ibits bit(16), SSP01210
 10 vl_b_stopack bit(1), SSP01220
 10 vl_b_newdata bit(1); SSP01230
 SSP01240
 /**/ SSP01250
 /* entry points */ SSP01260
 /**/ SSP01270
 SSP01280
 Declare SSP01290
 SSP01300
 /* bind service to addresses */ SSP01310
 ssServiceBind entry SSP01320
 (SSP01330
 fixed(31), /* return code */ SSP01340
 fixed(31), /* reason code */ SSP01350
 character(*), /* service name */ SSP01360
 fixed(31), /* its length */ SSP01370
 pointer(31), /* init addr */ SSP01380
 pointer(31), /* service addr */ SSP01390
 pointer(31), /* completion addr */ SSP01400
 fixed(31) /* service type */ SSP01410
) SSP01420
 external as ('BKWVBN'), SSP01430
 SSP01440
 /* find service block */ SSP01450
 ssServiceFind entry SSP01460
 (SSP01470
 fixed(31), /* return code */ SSP01480
 fixed(31), /* reason code */ SSP01490
 character(*), /* service name */ SSP01500
 fixed(31), /* its length */ SSP01510
 pointer(31) /* S-blk address */ SSP01520
) SSP01530
 external as ('BKWVFN'), SSP01540

Appendix I. Language Bindings 455

 SSP01550
 /* start the server */ SSP01560
 ssServerRun entry SSP01570
 (SSP01580
 fixed(31), /* return code */ SSP01590
 fixed(31) /* reason code */ SSP01600
) SSP01610
 external as ('BKWVRN'), SSP01620
 SSP01630
 /* stop the server */ SSP01640
 ssServerStop entry SSP01650
 (SSP01660
 fixed(31), /* return code */ SSP01670
 fixed(31) /* reason code */ SSP01680
) SSP01690
 external as ('BKWVSP'); SSP01700
 SSP01710

Trie Bindings (SSPLXTRI COPY)

*COPY SSPLXTRI SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* external bindings for trie routines */ SSP00050
 /* */ SSP00060
 /* */ SSP00070
 /* Brian Wade April 1999 */ SSP00080
 /* */ SSP00090
 /**/ SSP00100
 SSP00110
 SSP00120
 /**/ SSP00130
 /* constants */ SSP00140
 /**/ SSP00150
 SSP00160
 Declare SSP00170
 SSP00180
 /* ssTrie return codes */ SSP00190
 ss_tri_rc_success fixed(31) constant(0), SSP00200
 ss_tri_rc_warning fixed(31) constant(4), SSP00210
 ss_tri_rc_error fixed(31) constant(8), SSP00220
 ss_tri_rc_abend fixed(31) constant(12), SSP00230
 SSP00240
 /* ssTrie reason codes */ SSP00250
 ss_tri_re_success fixed(31) constant(0), SSP00260
 ss_tri_re_bad_size fixed(31) constant(1700+1), SSP00270
 ss_tri_re_trie_exists fixed(31) constant(1700+2), SSP00280
 ss_tri_re_out_of_storage fixed(31) constant(1700+3), SSP00290
 ss_tri_re_dscr_fail fixed(31) constant(1700+4), SSP00300
 ss_tri_re_trie_not_found fixed(31) constant(1700+5), SSP00310
 ss_tri_re_trie_busy fixed(31) constant(1700+6), SSP00320
 ss_tri_re_bad_index_len fixed(31) constant(1700+7), SSP00330
 ss_tri_re_bad_capacity fixed(31) constant(1700+8), SSP00340
 ss_tri_re_out_of_ds_storage fixed(31) constant(1700+9); SSP00350
 SSP00360
 SSP00370
 /**/ SSP00380
 /* Entry points */ SSP00390
 /**/ SSP00400
 SSP00410
 Declare SSP00420
 SSP00430
 /* ssTrieCreate */ SSP00440
 ssTrieCreate entry SSP00450
 (SSP00460
 fixed(31), /* return code */ SSP00470
 fixed(31), /* reason code */ SSP00480
 char(8), /* trie name */ SSP00490
 fixed(31), /* DS size (pgs) */ SSP00500
 char(8), /* ASIT */ SSP00510
 fixed(31) /* ALET */ SSP00520
) SSP00530
 external as ('BKWYCR'), SSP00540
 SSP00550
 /* ssTrieDelete */ SSP00560
 ssTrieDelete entry SSP00570
 (SSP00580
 fixed(31), /* return code */ SSP00590

456 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 fixed(31), /* reason code */ SSP00600
 char(8) /* trie name */ SSP00610
) SSP00620
 external as ('BKWYDE'), SSP00630
 SSP00640
 /* ssTrieRecordInsert */ SSP00650
 ssTrieRecordInsert entry SSP00660
 (SSP00670
 fixed(31), /* return code */ SSP00680
 fixed(31), /* reason code */ SSP00690
 char(8), /* trie name */ SSP00700
 fixed(31), /* trie ALET */ SSP00710
 fixed(31), /* record number */ SSP00720
 char(*), /* index buffer */ SSP00730
 fixed(31) /* index length */ SSP00740
) SSP00750
 external as ('BKWYRI'), SSP00760
 SSP00770
 /* ssTrieRecordList */ SSP00780
 ssTrieRecordList entry SSP00790
 (SSP00800
 fixed(31), /* return code */ SSP00810
 fixed(31), /* reason code */ SSP00820
 char(8), /* trie name */ SSP00830
 fixed(31), /* trie ALET */ SSP00840
 char(*), /* index buffer */ SSP00850
 fixed(31), /* index length */ SSP00860
 fixed(31), /* recnum array */ SSP00870
 fixed(31), /* array capacity */ SSP00880
 fixed(31) /* recs found */ SSP00890
) SSP00900
 external as ('BKWYRL'); SSP00910
 SSP00920

User ID Bindings (SSPLXUID COPY)

*COPY SSPLXUID SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for userid services */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - @VR2OZOZ */ SSP00090
 /* 5684-112 (C) COPYRIGHT IBM CORP.1991, 1992 @VR2OZOZ */ SSP00100
 /* LICENSED MATERIALS - PROPERTY OF IBM @VR2OZOZ */ SSP00110
 /* SEE COPYRIGHT INSTRUCTIONS, G120-2083 @VR2OZOZ */ SSP00120
 /* ALL RIGHTS RESERVED @VR2OZOZ */ SSP00130
 /* */ SSP00140
 /* STATUS - VM/ESA Version 2 Release 4 @VR2OZOZ */ SSP00150
 /* */ SSP00160
 /* CHANGE ACTIVITY - New for VM/ESA Version 2 Release 4 */ SSP00170
 /**/ SSP00180
 SSP00190
 /***/ SSP00200
 /* CONSTANTS */ SSP00210
 /***/ SSP00220
 SSP00230
 Declare SSP00240
 SSP00250
 /* config constants */ SSP00260
 ss_uid_index_width fixed(31) constant(64), SSP00270
 SSP00280
 /* return and reason codes */ SSP00290
 ss_uid_rc_success fixed(31) constant(0), SSP00300
 ss_uid_rc_warning fixed(31) constant(4), SSP00310
 ss_uid_rc_error fixed(31) constant(8), SSP00320
 ss_uid_rc_abend fixed(31) constant(12), SSP00330
 SSP00340
 ss_uid_re_success fixed(31) constant(0), SSP00350
 ss_uid_re_not_found fixed(31) constant(100+1); SSP00360
 SSP00370
 /***/ SSP00380
 /* STRUCTURES */ SSP00390
 /***/ SSP00400
 SSP00410
 /***/ SSP00420
 /* FUNCTIONS */ SSP00430

Appendix I. Language Bindings 457

 /***/ SSP00440
 SSP00450
 Declare SSP00460
 SSP00470
 /* routine to map user IDs */ SSP00480
 ssUseridMap entry SSP00490
 (SSP00500
 fixed(31), /* return code */ SSP00510
 fixed(31), /* reason code */ SSP00520
 character(*), /* input conn */ SSP00530
 fixed(31), /* its length */ SSP00540
 character(*), /* input node */ SSP00550
 fixed(31), /* its length */ SSP00560
 character(*), /* input user */ SSP00570
 fixed(31), /* its length */ SSP00580
 character(ss_uid_index_width), /* output user */ SSP00590
 fixed(31) /* its length */ SSP00600
) SSP00610
 external as ('BKWBMU'); SSP00620
 SSP00630

Worker Bindings (SSPLXWRK COPY)

*COPY SSPLXWRK SSP00010
 SSP00020
 /**/ SSP00030
 /* */ SSP00040
 /* NAME - Reusable Server Kernel PL/X bindings */ SSP00050
 /* */ SSP00060
 /* FUNCTION - Language bindings for worker services */ SSP00070
 /* */ SSP00080
 /* COPYRIGHT - */ SSP00090
 /* */ SSP00100
 /* THIS MODULE IS "RESTRICTED MATERIALS OF IBM" */ SSP00110
 /* 5654-030 (C) COPYRIGHT IBM CORP. - 1998, 1999 */ SSP00120
 /* LICENSED MATERIALS - PROPERTY OF IBM */ SSP00130
 /* ALL RIGHTS RESERVED. */ SSP00140
 /* */ SSP00150
 /* STATUS - VM/ESA Version 2, Release 4.0 */ SSP00160
 /* */ SSP00170
 /* CHANGE ACTIVITY - New for VM/ESA Version X Release Y */ SSP00180
 /* @SI124VM - alternate userid support in worker API */ SSP00190
 /**/ SSP00200
 SSP00210
 /***/ SSP00220
 /* CONSTANTS */ SSP00230
 /***/ SSP00240
 SSP00250
 Declare SSP00260
 SSP00270
 /* return and reason codes */ SSP00280
 ss_wrk_rc_success fixed(31) constant(0), SSP00290
 ss_wrk_rc_warning fixed(31) constant(4), SSP00300
 ss_wrk_rc_error fixed(31) constant(8), SSP00310
 ss_wrk_rc_abend fixed(31) constant(12), SSP00320
 SSP00330
 ss_wrk_re_success fixed(31) constant(0), SSP00340
 ss_wrk_re_out_of_storage fixed(31) constant(1600+1), SSP00350
 ss_wrk_re_bad_count fixed(31) constant(1600+2), SSP00360
 ss_wrk_re_bad_flag_name fixed(31) constant(1600+3), SSP00370
 ss_wrk_re_bad_flag_value fixed(31) constant(1600+4), SSP00380
 ss_wrk_re_no_class fixed(31) constant(1600+5), SSP00390
 ss_wrk_re_no_subordinates fixed(31) constant(1600+6), SSP00400
 ss_wrk_re_algtries_exceeded fixed(31) constant(1600+7), SSP00410
 ss_wrk_re_autolog_fail fixed(31) constant(1600+8), SSP00420
 ss_wrk_re_timer_fail fixed(31) constant(1600+9), SSP00430
 ss_wrk_re_iucvcon_fail fixed(31) constant(1600+10), SSP00440
 ss_wrk_re_force_fail fixed(31) constant(1600+11), SSP00450
 ss_wrk_re_force_timeout fixed(31) constant(1600+12), SSP00460
 ss_wrk_re_oper_delete fixed(31) constant(1600+13), SSP00470
 SSP00480
 /* option flag names */ SSP00490
 ss_wrk_ofn_prefer_empty fixed(31) constant(0), SSP00500
 ss_wrk_ofn_retry_count fixed(31) constant(1), SSP00510
 ss_wrk_ofn_alt_userid fixed(31) constant(2), /*@SI124VM*/ SSP00520
 ss_wrk_ofn_alt_seclabel fixed(31) constant(3), /*@SI124VM*/ SSP00530
 SSP00540
 /* option flag values */ SSP00550
 ss_wrk_ofv_no fixed(31) constant(0), SSP00560

458 z/VM: Reusable Server Kernel Prog. Guide & Ref.

 ss_wrk_ofv_yes fixed(31) constant(1); SSP00570
 SSP00580
 /***/ SSP00590
 /* STRUCTURES */ SSP00600
 /***/ SSP00610
 SSP00620
 /***/ SSP00630
 /* FUNCTIONS */ SSP00640
 /***/ SSP00650
 SSP00660
 Declare SSP00670
 SSP00680
 /* allocate a worker machine */ SSP00690
 ssWorkerAllocate entry SSP00700
 (SSP00710
 fixed(31), /* return code */ SSP00720
 fixed(31), /* reason code */ SSP00730
 pointer(31), /* instance C-block */ SSP00740
 char(8), /* class name */ SSP00750
 fixed(31), /* option count */ SSP00760
 fixed(31), /* option names */ SSP00770
 fixed(31), /* option values */ SSP00780
 pointer(31), /* worker C-block */ SSP00790
 fixed(31) /* connection ID */ SSP00800
) SSP00810
 external as ('BKWCAL'); SSP00820
 SSP00830

Appendix I. Language Bindings 459

460 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Appendix J. What's Changed Since the Beta

The reusable server kernel was available for several months before it became generally available. There
are some differences between the beta level and the GA level. The following table summarizes the
differences and describes the actions you must take to convert your program to run on the GA level.

Table 58. Differences Between Beta and GA Levels

Topic Beta GA Action

Name of your
mainline

VSSMAIN RSKMAIN Edit and recompile or
reassemble your mainline.

Profile file name PROFILE VMSS PROFILE RSK Change the name of your
profile.

Subcom name VMSS RSK Change your EXECs to use
ADDRESS RSK.

Entry point names VSSxxx BKWxxx Recompile or reassemble
your program.

Names of CMS- or
CP-managed
objects the server
kernel creates
(mutexes,
semaphores,
condition
variables, queues,
subpools,
HNDIUCV exit
names, data
spaces, and so on)

Often started with SS or VSS All start with BKW or DMS Avoid prefixes BKW and DMS.

IPC message keys,
event keys, timer
userwords

Often started with SS or VSS All start with BKW Avoid prefix BKW.

Macro library
containing
SSASMxxx
bindings

VSSGPI MACLIB DMSGPI MACLIB Change the control file you
use for assemblies.

Macro library
containing
SSPLXxxx
bindings

VSSPLX MACLIB DMSRP MACLIB Change the control file you
use for compilations.

The reusable
server kernel text
library

VSS TXTLIB BKWLIB TXTLIB Change your GLOBAL
TXTLIB command.

Supplementary
text library
shipped with the
beta

PSL TXTLIB DMSPSLK TXTLIB Change your GLOBAL
TXTLIB command.

© Copyright IBM Corp. 1999, 2020 461

Table 58. Differences Between Beta and GA Levels (continued)

Topic Beta GA Action

Default names for
authorization data
files

CMS filetypes started with
VSS

CMS filetypes start with RSK Rename your files or adjust
PROFILE RSK.

Default name for
storage group
configuration file

DEFAULT VSSSGP A DEFAULT RSKSGP A Rename your file or adjust
PROFILE RSK.

Default name for
user ID mapping
file

DEFAULT VSSUMAP * DEFAULT RSKUMAP * Rename your file or adjust
PROFILE RSK.

Exit name a
worker control
program should
use when it issues
HNDIUCV SET

VSSWORK RSKWORK

Default filetype for
request files
arriving for the
SPOOL line driver

VSSRQST RSKRQST Change your client or
PROFILE RSK
appropriately.

Default filetype for
response files
generated the
SPOOL line driver

VSSRESP RSKRESP Change your client or
PROFILE RSK
appropriately.

Message
repository file

VSSUME TEXT BKWUME TEXT Change the SET LANGUAGE
command your server issues
when it starts.

Runtime
environment
manager module

VSSRTE MODULE BKWRTE MODULE The old module is
incompatible and must be
replaced with the new one.

Message numbers VSScccnnnns BKWcccnnnns Probably nothing.

462 z/VM: Reusable Server Kernel Prog. Guide & Ref.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsurama, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

© Copyright IBM Corp. 1999, 2020 463

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM
shall not be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication primarily documents intended Programming Interfaces that allow the customer to write
programs to obtain the services of z/VM.

This publication also documents information that is NOT intended to be used as Programming Interfaces
of z/VM. This information is identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

 NOT-PI

<...NOT Programming Interface information...>

 NOT-PI end

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at IBM
copyright and trademark information - United States (www.ibm.com/legal/us/en/copytrade.shtml).

464 z/VM: Reusable Server Kernel Prog. Guide & Ref.

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

Notices 465

For more information about the use of various technologies, including cookies, for these purposes, see:

• IBM Privacy Statement at http://www.ibm.com/privacy/us/en/
• IBM Online Privacy Statement at http://www.ibm.com/privacy/details/us/en/ in the section entitled

"Cookies, Web Beacons and Other Technologies"

466 z/VM: Reusable Server Kernel Prog. Guide & Ref.

https://www.ibm.com/privacy/us/en/
https://www.ibm.com/privacy/details/us/en/

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Knowledge Center - z/VM (www.ibm.com/
support/knowledgecenter/SSB27U).

z/VM Base Library

Overview

• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service

• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration

• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/OS and z/VM: Hardware Configuration Manager User's Guide (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf), SC34-2670

Customization and Tuning

• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

© Copyright IBM Corp. 1999, 2020 467

http://www.ibm.com/support/knowledgecenter/SSB27U
http://www.ibm.com/support/knowledgecenter/SSB27U
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342670/$file/eequ100_v2r4.pdf

Operation and Use

• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268
• z/VM: System Operation, SC24-6326
• z/VM: TCP/IP User's Guide, SC24-6333
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming

• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• CPI Communications Reference, SC26-4399
• Common Programming Interface Resource Recovery Reference, SC31-6821
• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa760169/$file/glpa300_v2r4.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf), SA38-0683

468 z/VM: Reusable Server Kernel Prog. Guide & Ref.

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R4sa760169/$file/glpa300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380687/$file/ceea800_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4ga320908/$file/ceea100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380682/$file/ceea200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380683/$file/ceea300_v2r4.pdf

• z/OS: Language Environment Runtime Messages (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf), SA38-0684

• z/OS: MVS Program Management Advanced Facilities (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf), SA23-1393

Diagnosis

• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: VM Dump Tool, GC24-6335
• z/OS and z/VM: Hardware Configuration Definition Messages (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf), SC34-2668

z/VM Facilities and Features

Data Facility Storage Management Subsystem for VM

• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277
• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM

• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter

• Open Systems Adapter-Express Customer's Guide and Reference (www.ibm.com/support/pages/open-
systems-adapter-express-customers-guide-and-reference-0), SA22-7935

• Open Systems Adapter-Express Integrated Console Controller User's Guide (www.ibm.com/support/
pages/node/6019810), SC27-9003

• Open Systems Adapter-Express Integrated Console Controller 3215 Support (www.ibm.com/support/
knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247

• Open Systems Adapter/Support Facility on the Hardware Management Console (www.ibm.com/
support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Bibliography 469

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380686/$file/ceea900_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa380684/$file/ceea400_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231392/$file/ieab200_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa231393/$file/ieab100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sc342668/$file/cbdm100_v2r4.pdf
https://www.ibm.com/support/pages/open-systems-adapter-express-customers-guide-and-reference-0
https://www.ibm.com/support/pages/open-systems-adapter-express-customers-guide-and-reference-0
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

Performance Toolkit for z/VM

• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM

• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM

• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320
• z/OS: Network Job Entry (NJE) Formats and Protocols (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf), SA32-0988

Prerequisite Products

Device Support Facilities

• Device Support Facilities (ICKDSF): User's Guide and Reference (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf), GC35-0033

Environmental Record Editing and Printing Program

• Environmental Record Editing and Printing Program (EREP): Reference (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350152/$file/ifc2000_v2r4.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf), GC35-0151

470 z/VM: Reusable Server Kernel Prog. Guide & Ref.

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4sa320988/$file/hasa600_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350033/$file/ickug00_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc2000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r4gc350151/$file/ifc1000_v2r4.pdf

Index

A
allocate connection to worker machine 322
allocate memory 280
anchor function

ssAnchorGet 214
ssAnchorSet 216

anchor word
setting and querying value 49

API Details 55
APPC service commands

APPC LIST 81
APPC QUERY 83
APPC REPORT 84
APPC START 85
APPC STOP 87

APPC/VM
using for connectivity 19

AUTH service commands
AUTH CRECLASS 88
AUTH CREOBJECT 89
AUTH DELCLASS 90
AUTH DELOBJECT 91
AUTH DELUSER 92
AUTH LISTCLASS 93
AUTH LISTOBJECT 94
AUTH MODCLASS 95
AUTH PERMIT 96
AUTH QOBJECT 97
AUTH RELOAD 98

authorization
activating 41
administrative commands 40
database

initialize 37
storage 37

entry points 35
group 36
naming conventions 36
on minidisks 38
other services 40
overview 35
stopping and starting service 24

authorization files
on CMS minidisks 38
on Shared File System (SFS) 38

authorization function
ssAuthCreateClass 217
ssAuthCreateObject 219
ssAuthDeleteClass 221
ssAuthDeleteObject 223
ssAuthDeleteUser 225
ssAuthListClasses 227
ssAuthListObjects 229
ssAuthModifyClass 231
ssAuthPermitUser 233
ssAuthQueryObject 236

authorization function (continued)
ssAuthQueryRule 238
ssAuthTestOperations 242

B
basic concepts

reusable server kernel 1
bind service name to entry points 289
bindings, language 415
bring a storage group online 306
building a server module 9

C
CACHE service commands

CACHE CREATE 100
CACHE DELETE 101
CACHE LIST 102

calling
entry points 7

client function
ssClientDataGet 258
ssClientDataInit 260
ssClientDataPut 261
ssClientDataTerm 263

close cached file 247
CMS minidisks

using 38
CMS service commands

CMS 103
CMS Shared File System (SFS)

using 38
CMSSTOR facility

storage management 51
commands

APPC LIST 81
APPC QUERY 83
APPC REPORT 84
APPC START 85
APPC STOP 87
AUTH CRECLASS 88
AUTH CREOBJECT 89
AUTH DELCLASS 90
AUTH DELOBJECT 91
AUTH DELUSER 92
AUTH LISTCLASS 93
AUTH LISTOBJECT 94
AUTH MODCLASS 95
AUTH PERMIT 96
AUTH QOBJECT 97
AUTH RELOAD 98
BKWENRCP 99
CACHE CREATE 100
CACHE DELETE 101
CACHE LIST 102
CMS 103

Index 471

commands (continued)
CONFIG AUT_CACHE 104
CONFIG AUT_DATA_1 105
CONFIG AUT_DATA_2 106
CONFIG AUT_FREE 107
CONFIG AUT_INDEX_1 108
CONFIG AUT_INDEX_2 109
CONFIG AUT_LOCATION 110
CONFIG AUT_LOG 111
CONFIG AUTHCHECK_AUTH 112
CONFIG AUTHCHECK_CACHE 113
CONFIG AUTHCHECK_CMS 114
CONFIG AUTHCHECK_CONFIG 115
CONFIG AUTHCHECK_CP 116
CONFIG AUTHCHECK_ENROLL 117
CONFIG AUTHCHECK_LD 118
CONFIG AUTHCHECK_MONITOR 119
CONFIG AUTHCHECK_SERVER 120
CONFIG AUTHCHECK_SGP 121
CONFIG AUTHCHECK_TRIE 122
CONFIG AUTHCHECK_USERID 123
CONFIG AUTHCHECK_WORKER 124
CONFIG MEM_MAXFREE 125
CONFIG MON_KERNEL_ROWS 126
CONFIG MON_PRODUCT_ID 127
CONFIG MON_USER_SIZE 128
CONFIG MSG_NOHDR 129
CONFIG NOMAP_APPC 130
CONFIG NOMAP_IUCV 131
CONFIG NOMAP_MSG 132
CONFIG NOMAP_SPOOL 133
CONFIG NOMAP_TCP 134
CONFIG NOMAP_UDP 135
CONFIG RSCS_USERID 136
CONFIG SGP_FILE 137
CONFIG SPL_CATCHER 138
CONFIG SPL_INPUT_FT 139
CONFIG SPL_OUTPUT_FT 140
CONFIG SRV_THREADS 141
CONFIG UMAP_FILE 142
CONFIG VM_CONSOLE 143
CONFIG VM_MSG 144
CONFIG VM_SPOOL 145
CONFIG VM_SUBCOM 146
CONSOLE LIST 147
CONSOLE QUERY 148
CONSOLE START 149
CONSOLE STOP 150
CP 151
ENROLL COMMIT 152
ENROLL DROP 153
ENROLL GET 154
ENROLL INSERT 155
ENROLL LIST 156
ENROLL LOAD 157
ENROLL RECLIST 158
ENROLL REMOVE 159
issuing to line drivers 22
IUCV LIST 160
IUCV QUERY 161
IUCV REPORT 162
IUCV START 163
IUCV STOP 164
MONITOR DISPLAY 165

commands (continued)
MONITOR USER 166
MSG LIST 167
MSG QUERY 168
MSG START 169
MSG STOP 170
SERVER MONITOR 172
SERVER SERVICES 171
SERVER STOP 173
SGP CREATE 174
SGP DELETE 175
SGP LIST 176
SGP MDLIST 178
SGP START 179
SGP STOP 180
SPOOL LIST 181
SPOOL QUERY 182
SPOOL START 183
SPOOL STOP 184
SUBCOM LIST 185
SUBCOM QUERY 186
SUBCOM START 187
SUBCOM STOP 188
TCP LIST 189
TCP QUERY 190
TCP REPORT 191
TCP START 192
TCP STOP 194
TRIE LIST 195
UDP LIST 196
UDP QUERY 197
UDP REPORT 198
UDP START 199
UDP STOP 200
USERID MAP 201
USERID RELOAD 202
WORKER ADD 203
WORKER CLASSES 204
WORKER DELCLASS 205
WORKER DELETE 206
WORKER DISTRIBUTE 207
WORKER MACHINES 208
WORKER RESET 210
WORKER STATUS 211

commit enrollment set 264
CONFIG service commands

CONFIG AUT_CACHE 104
CONFIG AUT_DATA_1 105
CONFIG AUT_DATA_2 106
CONFIG AUT_FREE 107
CONFIG AUT_INDEX_1 108
CONFIG AUT_INDEX_2 109
CONFIG AUT_LOCATION 110
CONFIG AUT_LOG 111
CONFIG AUTHCHECK_AUTH 112
CONFIG AUTHCHECK_CACHE 113
CONFIG AUTHCHECK_CMS 114
CONFIG AUTHCHECK_CONFIG 115
CONFIG AUTHCHECK_CP 116
CONFIG AUTHCHECK_ENROLL 117
CONFIG AUTHCHECK_LD 118
CONFIG AUTHCHECK_MONITOR 119
CONFIG AUTHCHECK_SERVER 120
CONFIG AUTHCHECK_SGP 121

472 z/VM: Reusable Server Kernel Prog. Guide & Ref.

CONFIG service commands (continued)
CONFIG AUTHCHECK_TRIE 122
CONFIG AUTHCHECK_USERID 123
CONFIG AUTHCHECK_WORKER 124
CONFIG MEM_MAXFREE 125
CONFIG MON_KERNEL_ROWS 126
CONFIG MON_PRODUCT_ID 127
CONFIG MON_USER_SIZE 128
CONFIG MSG_NOHDR 129
CONFIG NOMAP_APPC 130
CONFIG NOMAP_IUCV 131
CONFIG NOMAP_MSG 132
CONFIG NOMAP_SPOOL 133
CONFIG NOMAP_TCP 134
CONFIG NOMAP_UDP 135
CONFIG RSCS_USERID 136
CONFIG SGP_FILE 137
CONFIG SPL_CATCHER 138
CONFIG SPL_INPUT_FT 139
CONFIG SPL_OUTPUT_FT 140
CONFIG SRV_THREADS 141
CONFIG UMAP_FILE 142
CONFIG VM_CONSOLE 143
CONFIG VM_MSG 144
CONFIG VM_SPOOL 145
CONFIG VM_SUBCOM 146

configuation parameters 65
configuation variables 66
configuring the server 63
connectivity

APPC/VM 19
IUCV 18
line driver 11
MSG/SMSG commands 20
spool file 19
subcom 21
TCP/IP 16
UDP/IP 17
virtual console 21

console line driver 23
CONSOLE service commands

CONSOLE LIST 147
CONSOLE QUERY 148
CONSOLE START 149
CONSOLE STOP 150

CP service commands 151
create a storage group 293
create a trie 313
create cache 244
create data space 282
create object 219
create object class 217

D
delete

a class 221
a storage group 295
a user 225
an object 223
cache 246
subpool 284

delete a trie 315
Distributing Worker Machines 54

drop enrollment set 266

E
ENROLL service commands

BKWENRCP 99
ENROLL COMMIT 152
ENROLL DROP 153
ENROLL GET 154
ENROLL INSERT 155
ENROLL LIST 156
ENROLL LOAD 157
ENROLL RECLIST 158
ENROLL REMOVE 159

enrollment function
ssEnrollCommit 264
ssEnrollDrop 266
ssEnrollList 268
ssEnrollLoad 270
ssEnrollRecordGet 272
ssEnrollRecordInsert 274
ssEnrollRecordList 276
ssEnrollRecordRemove 278

entry point
authorization 35
calling 7
initialization 6
RSKMAIN 63
service 6

F
find a storage group 297
find service by name 291
flow of control, reusable server kernel 63
Functional Overview 53
functions

ssAnchorGet 214
ssAnchorSet 216
ssAuthCreateClass 217
ssAuthCreateObject 219
ssAuthDeleteClass 221
ssAuthDeleteObject 223
ssAuthDeleteUser 225
ssAuthListClasses 227
ssAuthListObjects 229
ssAuthModifyClass 231
ssAuthPermitUser 233
ssAuthQueryObject 236
ssAuthQueryRule 238
ssAuthReload 240
ssAuthTestOperations 242
ssCacheCreate 244
ssCacheDelete 246
ssCacheFileClose 247
ssCacheFileOpen 248
ssCacheFileRead 252
ssCacheQuery 254
ssCacheXlTabSet 256
ssClientDataGet 258
ssClientDataInit 260
ssClientDataPut 261
ssClientDataTerm 263

Index 473

functions (continued)
ssEnrollCommit 264
ssEnrollDrop 266
ssEnrollList 268
ssEnrollLoad 270
ssEnrollRecordGet 272
ssEnrollRecordInsert 274
ssEnrollRecordList 276
ssEnrollRecordRemove 278
ssMemoryAllocate 280
ssMemoryCreateDS 282
ssMemoryDelete 284
ssMemoryRelease 285
ssServerRun 287
ssServerStop 288
ssServiceBind 289
ssServiceFind 291
ssSgpCreate 293
ssSgpDelete 295
ssSgpFind 297
ssSgpList 299
ssSgpQuery 301
ssSgpRead 304
ssSgpStart 306
ssSgpStop 309
ssSgpWrite 311
ssTrieCreate 313
ssTrieDelete 315
ssTrieRecordInsert 316
ssTrieRecordList 318
ssUseridMap 320
ssWorkerAllocate 322

G
get data from client buffers 258
get enrollment record 272
get value of anchor word 214
group

authorization 36

I
indexes

example 47
lookup by prefix 47
sharing 47

indexing 47
initialization entry point 6
initialize client buffers 260
initializing

the server 63
insert enrollment record 274
insert record into trie 316
IUCV

using for connectivity 18
IUCV service commands

IUCV LIST 160
IUCV QUERY 161
IUCV REPORT 162
IUCV START 163
IUCV STOP 164

L
language bindings

assembler
anchor 415
authorization 416
cache 421
client 423
enrollment 425
memory 428
services 433
storage group 430
trie 436
user ID 438
worker 439

PL/X
anchor 440
authorization 441
cache 444
client 447
enrollment 448
memory 450
services 454
storage group 451
trie 456
user ID 457
worker 458

line driver
connectivity 11
console 23
control block 12
organization 11
routing data 22
self-sourced 23
TCP/IP 23
writing your own 23

list all storage groups 299
list classes 227
list enrollment sets 268
list matching records 318
list objects in class 229
list records in enrollment set 276
list tries 195
load enrollment set 270

M
mapping file, user ID 69
memory function

ssMemoryAllocate 280
ssMemoryCreateDS 282
ssMemoryDelete 284
ssMemoryRelease 285

message examples, notation used in 80
migrate

between repositories 39
minidisks

using 38
modify object class 231
MONITOR service commands

MONITOR DISPLAY 165
MONITOR USER 166

MSG/SMSG commands
connectivity 20

474 z/VM: Reusable Server Kernel Prog. Guide & Ref.

MSG/SMSG commands (continued)
console line driver 23
TCP/IP line driver 23

MSG/SMSG service commands
MSG LIST 167
MSG QUERY 168
MSG START 169
MSG STOP 170

N
naming convention

authorization 36
notation used in message and response examples 80
notices 463

O
open cached file 248
Operator Commands 56

P
parameters, configuration 65
permit a user 233
PLXSOCK 330
preface xix
procedure

entry
assembler 61
conventions 61
PL/X 61
register content 60

exit
assembler 61
conventions 61
PL/X 61

produce a mapped user ID 320
PROFILE RSK exec 63, 65
put data to client buffers 261

Q
query a specific storage group 301
query a user's authorizations 238
query an object 236
query cache 254

R
read blocks from a storage group 304
read cached file 252
release memory 285
remove enrollment record 278
repository

migrating authorization data 39
reserved names 375
reset internal authorization engine 240
response examples, notation used in 80
reusable server kernel

basic concepts 1
configuring 63
execution 63

reusable server kernel (continued)
functions 327
initializing 63
line driver 22
programming with sockets

data structures 330
querying value

of anchor word 49
restrictions 329
setting value

of anchor word 49
storage group 69

RSKMAIN 63
run the server 287
run-time anchor block (RAB) 59

S
self-sourced line driver 23
server

initialization 5
mainline 4
program 4

Server Configuration Considerations 54
server function

ssServerRun 287
ssServerStop 288

server module
building 9

SERVER service commands
SERVER MONITOR 172
SERVER SERVICES 171
SERVER STOP 173

service
authorization 24
console line driver 23
starting and stopping 22

service entry point 6
service function

ssServiceBind 289
ssServiceFind 291

set translation table 256
set value of anchor word 216
SGP service commands

SGP CREATE 174
SGP DELETE 175
SGP LIST 176
SGP MDLIST 178
SGP START 179
SGP STOP 180

Shared File System (SFS)
using 38

socket calls
PS_accept 331
PS_applinit 332
PS_applterm 334
PS_async_read 334
PS_async_recv 336
PS_async_sendto 337
PS_async_write 339
PS_bind 340
PS_cancel 341
PS_close 342
PS_connect 343

Index 475

socket calls (continued)
PS_gethostid 344
PS_getpeername 344
PS_getsockname 345
PS_getsockopt 346
PS_ioctl 347
PS_libinit 348
PS_libterm 349
PS_listen 350
PS_read 351
PS_recvfrom 352
PS_select 353
PS_sendto 354
PS_setsockopt 356
PS_shutdown 357
PS_socket 357
PS_write 358

sockets
functions 327

spool file
using for connectivity 19

SPOOL service commands
SPOOL LIST 181
SPOOL QUERY 182
SPOOL START 183
SPOOL STOP 184

starting and stopping service 22
stop the server 288
storage function

ssSgpCreate 293
ssSgpDelete 295
ssSgpFind 297
ssSgpList 299
ssSgpQuery 301
ssSgpRead 304
ssSgpStart 306
ssSgpStop 309
ssSgpWrite 311

storage group
reusable server kernel 69

storage management
using CMSSTOR facility 51

subcom
connectivity 21

SUBCOM service commands
SUBCOM LIST 185
SUBCOM QUERY 186
SUBCOM START 187
SUBCOM STOP 188

syntax diagrams, how to read 78

T
take a storage group offline 309
TCP service commands

TCP LIST 189
TCP QUERY 190
TCP REPORT 191
TCP START 192
TCP STOP 194

TCP/IP
using for connectivity 16

terminate client buffers 263
test a user's access rights 242

The Worker C-Block 56
trademarks 464
trie function

ssTrieCreate 313
ssTrieDelete 315
ssTrieRecordInsert 316
ssTrieRecordList 318

TRIE service commands
TRIE LIST 195

U
UDP service commands

UDP LIST 196
UDP QUERY 197
UDP REPORT 198
UDP START 199
UDP STOP 200

UDP/IP
using for connectivity 17

user ID mapping file 69
USERID service commands

USERID MAP 201
USERID RELOAD 202

V
variables, configuration 66
virtual console

connectivity 21

W
What's Changed Since the Beta 461
Worker Machines 53
WORKER service commands

WORKER ADD 203
WORKER CLASSES 204
WORKER DELCLASS 205
WORKER DELETE 206
WORKER DISTRIBUTE 207
WORKER MACHINES 208
WORKER RESET 210
WORKER STATUS 211

write blocks to a storage group 311
Writing a Worker Machine Program 57

476 z/VM: Reusable Server Kernel Prog. Guide & Ref.

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6313-01

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information

	How to Send Your Comments to IBM
	Summary of Changes for z/VM Reusable Server Kernel Programmer's Guide and Reference
	SC24-6313-01, z/VM 7.2 (September 2020)
	SC24-6313-00, z/VM 7.1 (September 2018)
	SC24-6220-02, z/VM 6.4 (November 2016)

	Chapter 1. Basic Concepts
	Motivation
	Overall Server Organization
	Jobs of the Mainline
	More About Services
	Anything Else?
	Calling The Entry Points
	DMSGPI Macros
	DMSRP Macros

	Building a Server Module
	Setup At A Glance
	Other Considerations

	Chapter 2. Connectivity and Line Drivers
	The Service Instance's View
	The Client Block, or C-Block
	From Line Driver to Instance
	From Instance to Line Driver

	TCP/IP Considerations
	UDP/IP Considerations
	IUCV Considerations
	APPC/VM Considerations
	Spool Considerations
	MSG/SMSG Considerations
	Virtual Console Considerations
	Subcom Considerations
	Line Driver Commands
	More Detail on Line Drivers
	Line Drivers as Services
	Self-Sourced Line Drivers
	Writing Your Own Line Driver

	Authorization

	Chapter 3. DASD Management
	DASD Subsystem Overview
	Limits
	Modes of Operation
	Programming Interfaces
	Administrator and Operator Considerations
	Creating a Storage Group
	Changing the Minidisks in A Storage Group
	Deleting A Storage Group

	Chapter 4. File Caching
	Managing the Set of Caches
	File Operations
	Transformations
	Example
	Stale Data
	Cache Utilization
	Constraints

	Chapter 5. Authorization
	Overview
	Entry Points
	Naming Conventions and Other Limits
	Group Authorization Considerations
	Persistent Storage of Authorization Data
	Using CMS Minidisks
	Using the CMS Shared File System
	Migrating Among Repositories

	Parallelism
	Administrative Commands
	Other Services' Use of Authorization
	Overview
	Activation

	Chapter 6. Enrollment
	Programming Interfaces
	Operator Commands

	Chapter 7. Indexing by Prefixes
	Overview
	Example
	Index Sharing
	No Record Deletion?
	Commands

	Chapter 8. Anchors
	Chapter 9. Memory Management
	Chapter 10. Worker Machines
	Functional Overview
	Server Configuration Considerations
	Distributing Worker Machines
	API Details
	The Worker C-Block
	Operator Commands
	Writing a Worker Machine Program

	Chapter 11. Run-Time Environment
	Chapter 12. Initialization and Profiles
	Flow of Control
	Execution Conditions within RSKMAIN
	PROFILE RSK
	Starting and Stopping
	Configuration Parameters
	Storage Group Definition File
	User ID Mapping Facility

	Chapter 13. Monitor Data
	Monitor Buffer Organization
	Kernel Row
	Service Row
	Line Driver Row
	Authorization Row
	Storage Group Row
	Memory Row
	Enrollment Row
	Cache Row
	Trie Row
	Worker Row

	Chapter 14. Command Descriptions
	Syntax, Message, and Response Conventions
	APPC LIST
	APPC QUERY
	APPC REPORT
	APPC START
	APPC STOP
	AUTH CRECLASS
	AUTH CREOBJECT
	AUTH DELCLASS
	AUTH DELOBJECT
	AUTH DELUSER
	AUTH LISTCLASS
	AUTH LISTOBJECT
	AUTH MODCLASS
	AUTH PERMIT
	AUTH QOBJECT
	AUTH RELOAD
	BKWENRCP
	CACHE CREATE
	CACHE DELETE
	CACHE LIST
	CMS
	CONFIG AUT_CACHE
	CONFIG AUT_DATA_1
	CONFIG AUT_DATA_2
	CONFIG AUT_FREE
	CONFIG AUT_INDEX_1
	CONFIG AUT_INDEX_2
	CONFIG AUT_LOCATION
	CONFIG AUT_LOG
	CONFIG AUTHCHECK_AUTH
	CONFIG AUTHCHECK_CACHE
	CONFIG AUTHCHECK_CMS
	CONFIG AUTHCHECK_CONFIG
	CONFIG AUTHCHECK_CP
	CONFIG AUTHCHECK_ENROLL
	CONFIG AUTHCHECK_LD
	CONFIG AUTHCHECK_MONITOR
	CONFIG AUTHCHECK_SERVER
	CONFIG AUTHCHECK_SGP
	CONFIG AUTHCHECK_TRIE
	CONFIG AUTHCHECK_USERID
	CONFIG AUTHCHECK_WORKER
	CONFIG MEM_MAXFREE
	CONFIG MON_KERNEL_ROWS
	CONFIG MON_PRODUCT_ID
	CONFIG MON_USER_SIZE
	CONFIG MSG_NOHDR
	CONFIG NOMAP_APPC
	CONFIG NOMAP_IUCV
	CONFIG NOMAP_MSG
	CONFIG NOMAP_SPOOL
	CONFIG NOMAP_TCP
	CONFIG NOMAP_UDP
	CONFIG RSCS_USERID
	CONFIG SGP_FILE
	CONFIG SPL_CATCHER
	CONFIG SPL_INPUT_FT
	CONFIG SPL_OUTPUT_FT
	CONFIG SRV_THREADS
	CONFIG UMAP_FILE
	CONFIG VM_CONSOLE
	CONFIG VM_MSG
	CONFIG VM_SPOOL
	CONFIG VM_SUBCOM
	CONSOLE LIST
	CONSOLE QUERY
	CONSOLE START
	CONSOLE STOP
	CP
	ENROLL COMMIT
	ENROLL DROP
	ENROLL GET
	ENROLL INSERT
	ENROLL LIST
	ENROLL LOAD
	ENROLL RECLIST
	ENROLL REMOVE
	IUCV LIST
	IUCV QUERY
	IUCV REPORT
	IUCV START
	IUCV STOP
	MONITOR DISPLAY
	MONITOR USER
	MSG LIST
	MSG QUERY
	MSG START
	MSG STOP
	SERVER SERVICES
	SERVER MONITOR
	SERVER STOP
	SGP CREATE
	SGP DELETE
	SGP LIST
	SGP MDLIST
	SGP START
	SGP STOP
	SPOOL LIST
	SPOOL QUERY
	SPOOL START
	SPOOL STOP
	SUBCOM LIST
	SUBCOM QUERY
	SUBCOM START
	SUBCOM STOP
	TCP LIST
	TCP QUERY
	TCP REPORT
	TCP START
	TCP STOP
	TRIE LIST
	UDP LIST
	UDP QUERY
	UDP REPORT
	UDP START
	UDP STOP
	USERID MAP
	USERID RELOAD
	WORKER ADD
	WORKER CLASSES
	WORKER DELCLASS
	WORKER DELETE
	WORKER DISTRIBUTE
	WORKER MACHINES
	WORKER RESET
	WORKER STATUS

	Chapter 15. Function Descriptions
	ssAnchorGet — Get Anchor Value
	ssAnchorSet — Set Anchor Value
	ssAuthCreateClass — Create an Object Class
	ssAuthCreateObject — Create an Object
	ssAuthDeleteClass — Delete a Class
	ssAuthDeleteObject — Delete an Object
	ssAuthDeleteUser — Delete a User
	ssAuthListClasses — List Classes
	ssAuthListObjects — List Objects in Class
	ssAuthModifyClass — Modify an Object Class
	ssAuthPermitUser — Permit a User
	ssAuthQueryObject — Query an Object
	ssAuthQueryRule — Query a Rule
	ssAuthReload — Reload Authorization Data
	ssAuthTestOperations — Test Operations
	ssCacheCreate — Create Cache
	ssCacheDelete — Delete Cache
	ssCacheFileClose — Close Cached File
	ssCacheFileOpen — Open Cached File
	ssCacheFileRead — Read Cached File
	ssCacheQuery — Query Cache
	ssCacheXlTabSet — Set Translation Table
	ssClientDataGet — Get Client Data
	ssClientDataInit — Initialize Client Data Buffers
	ssClientDataPut — Put Client Data
	ssClientDataTerm — Terminate Client Data Buffers
	ssEnrollCommit — Commit Enrollment Set
	ssEnrollDrop — Drop Enrollment Set
	ssEnrollList — List Enrollment Sets
	ssEnrollLoad — Load Enrollment Set
	ssEnrollRecordGet — Get Enrollment Record
	ssEnrollRecordInsert — Insert Enrollment Record
	ssEnrollRecordList — List Records In Enrollment Set
	ssEnrollRecordRemove — Remove Enrollment Record
	ssMemoryAllocate — Allocate Memory
	ssMemoryCreateDS — Create Data Space
	ssMemoryDelete — Delete Subpool
	ssMemoryRelease — Release Memory
	ssServerRun — Run the Server
	ssServerStop — Stop the Server
	ssServiceBind — Bind A Service
	ssServiceFind — Find A Service
	ssSgpCreate — Create a Storage Group
	ssSgpDelete — Delete a Storage Group
	ssSgpFind — Find a Storage Group
	ssSgpList — List Storage Groups
	ssSgpQuery — Query a Storage Group
	ssSgpRead — Read a Storage Group
	ssSgpStart — Start a Storage Group
	ssSgpStop — Stop a Storage Group
	ssSgpWrite — Write a Storage Group
	ssTrieCreate — Create a Trie
	ssTrieDelete — Delete a Trie
	ssTrieRecordInsert — Insert Record Into Trie
	ssTrieRecordList — List Matching Records
	ssUseridMap — Produce Mapped User ID
	ssWorkerAllocate — Allocate Connection to Worker Machine

	Chapter 16. RSK Sockets
	Prerequisite Knowledge
	Available Functions
	Programming with RSK Sockets
	Restrictions and Limitations
	Data Structures
	Address Structure
	Timeout Structure

	Notes on PLXSOCK COPY
	Constants
	Structures
	Function Prototypes

	Return Codes and ERRNO Values
	RSK Socket Calls
	PS_accept
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_applinit
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_applterm
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_read
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_recv
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_sendto
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_async_write
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_bind
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_cancel
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_close
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_connect
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_gethostid
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_getpeername
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_getsockname
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_getsockopt
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_ioctl
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_libinit
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_libterm
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_listen
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_read
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_recvfrom
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_select
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_sendto
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_setsockopt
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_shutdown
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_socket
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	PS_write
	Purpose
	PL/X Illustration
	Parameters
	Reason Codes
	Usage Notes

	Appendix A. Sample PROFILE RSK
	Appendix B. Sample User ID Mapping File
	Appendix C. Authorization Data File Formats
	Overview
	The Data File
	The Index File
	The Log File

	Appendix D. Enrollment Data File Format
	Appendix E. Storage Group File
	Appendix F. Reserved Names
	Service Names
	Data Spaces
	TCP/IP Subtask Names
	UDP/IP Subtask Names

	Appendix G. More Detail On Reason Codes
	Appendix H. Messages
	Generally Applicable Messages
	CONFIG Service Messages
	Line Driver Messages
	SERVER Service Messages
	USERID Service Messages
	TCP and UDP Line Driver Messages
	SGP Service Messages
	RSK SUBCOM Messages
	AUTH Service Messages
	CP Service Messages
	CMS Service Messages
	MSG Line Driver Messages
	SPOOL Line Driver Messages
	Enrollment API Messages
	MONITOR Service Messages
	CACHE Service Messages
	IUCV Line Driver Messages
	APPC Line Driver Messages
	Worker API Messages
	Trie Messages

	Appendix I. Language Bindings
	Assembler Language Bindings
	Anchor Bindings (SSASMANC MACRO)
	Authorization Bindings (SSASMAUT MACRO)
	Cache Bindings (SSASMCAC MACRO)
	Client Bindings (SSASMCLI MACRO)
	Enrollment Bindings (SSASMENR MACRO)
	Memory Bindings (SSASMMEM MACRO)
	Storage Group Bindings (SSASMSGP MACRO)
	Services Bindings (SSASMSRV MACRO)
	Trie Bindings (SSASMTRI MACRO)
	User ID Bindings (SSASMUID MACRO)
	Worker Bindings (SSASMWRK MACRO)

	PL/X Language Bindings
	Anchor Bindings (SSPLXANC COPY)
	Authorization Bindings (SSPLXAUT COPY)
	Cache Bindings (SSPLXCAC COPY)
	Client Bindings (SSPLXCLI COPY)
	Enrollment Bindings (SSPLXENR COPY)
	Memory Bindings (SSPLXMEM COPY)
	Storage Group Bindings (SSPLXSGP COPY)
	Services Bindings (SSPLXSRV COPY)
	Trie Bindings (SSPLXTRI COPY)
	User ID Bindings (SSPLXUID COPY)
	Worker Bindings (SSPLXWRK COPY)

	Appendix J. What's Changed Since the Beta
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

